Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (62)
  • Open Access

    ARTICLE

    T-Splines for Isogeometric Analysis of Two-Dimensional Nonlinear Problems

    Mayi Guo, Gang Zhao, Wei Wang*, Xiaoxiao Du, Ran Zhang, Jiaming Yang

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 821-843, 2020, DOI:10.32604/cmes.2020.09898 - 01 May 2020

    Abstract Nonlinear behaviors are commonplace in many complex engineering applications, e.g., metal forming, vehicle crash test and so on. This paper focuses on the T-spline based isogeometric analysis of two-dimensional nonlinear problems including general large deformation hyperelastic problems and small deformation elastoplastic problems, to reveal the advantages of local refinement property of T-splines in describing nonlinear behavior of materials. By applying the adaptive refinement capability of T-splines during the iteration process of analysis, the numerical simulation accuracy of the nonlinear model could be increased dramatically. The Bézier extraction of the T-splines provides an element structure for More >

  • Open Access

    ARTICLE

    Multiresolution Isogeometric Topology Optimisation Using Moving Morphable Voids

    Bingxiao Du1, Yong Zhao1, *, Wen Yao2, Xuan Wang3, Senlin Huo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 1119-1140, 2020, DOI:10.32604/cmes.2020.08859 - 01 March 2020

    Abstract A general and new explicit isogeometric topology optimisation approach with moving morphable voids (MMV) is proposed. In this approach, a novel multiresolution scheme with two distinct discretisation levels is developed to obtain high-resolution designs with a relatively low computational cost. Ersatz material model based on Greville abscissae collocation scheme is utilised to represent both the Young’s modulus of the material and the density field. Two benchmark examples are tested to illustrate the effectiveness of the proposed method. Numerical results show that high-resolution designs can be obtained with relatively low computational cost, and the optimisation can More >

  • Open Access

    ARTICLE

    Multiscale Isogeometric Topology Optimization with Unified Structural Skeleton

    Chen Yu1, Qifu Wang1, ∗, Chao Mei1, Zhaohui Xia1

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 779-803, 2020, DOI:10.32604/cmes.2020.09363 - 01 March 2020

    Abstract This paper proposes a multiscale isogeometric topology optimization (ITO) method where the configuration and layout of microstructures are optimized simultaneously. At micro scale, a shape deformation method is presented to transform a prototype microstructure (PM) for obtaining a series of graded microstructures (GMs), where microstructural skeleton based on the level set framework is applied to retain more topology features and improve the connectability. For the macro scale calculation, the effective mechanical properties can be estimated by means of the numerical homogenization method. By adopting identical non-uniform rational basis splines (NURBS) as basis functions for both More >

  • Open Access

    ARTICLE

    Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis

    Yingjun Wang1, Zhongyuan Liao1, Shengyu Shi1, *, Zhenpei Wang2, *, Leong Hien Poh3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 433-458, 2020, DOI:10.32604/cmes.2020.08680 - 01 February 2020

    Abstract Focusing on the structural optimization of auxetic materials using data-driven methods, a back-propagation neural network (BPNN) based design framework is developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-based parametric modelling scheme with a small number of design variables, the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method, and demonstrated in this work to give high accuracy and efficiency. Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis, in contrast to the generally complex procedures of typical shape and size sensitivity More >

  • Open Access

    ARTICLE

    Reusing the Evaluations of Basis Functions in the Integration for Isogeometric Analysis

    Zijun Wu1, Shuting Wang2, Wenjun Shao3, *, Lianqing Yu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 459-485, 2020, DOI:10.32604/cmes.2020.08697 - 01 February 2020

    Abstract We propose a new approach to reuse the basis function evaluations in the numerical integration of isogeometric analysis. The concept of reusability of the basis functions is introduced according to their symmetrical, translational and proportional features on both the coarse and refined levels. Based on these features and the parametric domain regularity of each basis, we classify the bases on the original level and then reuse them on the refined level, which can reduce the time for basis calculations at integration nodes. By using the sum factorization method and the mean value theorem for the More >

  • Open Access

    ARTICLE

    Analysis of Unsteady Heat Transfer Problems with Complex Geometries Using Isogeometric Boundary Element Method

    Weihua Fang1, Zhilin An2, Tiantang Yu2, *, Tinh Quoc Bui3, 4, *

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 929-962, 2020, DOI:10.32604/cmc.2020.05022

    Abstract Numerical analysis of unsteady heat transfer problems with complex geometries by the isogeometric boundary element method (IGABEM) is presented. The IGABEM possesses many desirable merits and features, for instance, (a) exactly represented arbitrarily complex geometries, and higher-order continuity due to nonuniform rational B-splines (NURBS) shape functions; (b) using NURBS for both field approximation and geometric description; (c) directly utilizing geometry data from computer-aided design (CAD); and (d) only boundary discretization. The formulation of IGABEM for unsteady heat transfer is derived. The domain discretization in terms of IGABEM for unsteady heat transfer is required as that More >

  • Open Access

    ABSTRACT

    An Isogeometric Analysis Computational Platform for Material Transport Simulation in Complex Neurite Networks

    Angran Li1, Xiaoqi Chai2, Ge Yang2,3, Yongjie Jessica Zhang1,2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 66-66, 2019, DOI:10.32604/mcb.2019.07633

    Abstract Neurons exhibit remarkably complex geometry in their neurite networks. So far, how materials are transported in the complex geometry for survival and function of neurons remains an unanswered question. Answering this question is fundamental to understanding the physiology and disease of neurons. Here, we have developed an isogeometric analysis (IGA) based platform for material transport simulation in neurite networks. We modeled the transport process by reaction-diffusion-transport equations and represented geometry of the networks using truncated hierarchical tricubic B-splines (THB-spline3D). We solved the Navier-Stokes equations to obtain the velocity field of material transport in the networks. More >

  • Open Access

    ARTICLE

    An Isogeometric Analysis Computational Platform for Material Transport Simulation in Complex Neurite Networks

    Angran Li1, Xiaoqi Chai2, Ge Yang2,3, Yongjie Jessica Zhang1,2,*

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 123-140, 2019, DOI:10.32604/mcb.2019.06479

    Abstract Neurons exhibit remarkably complex geometry in their neurite networks. So far, how materials are transported in the complex geometry for survival and function of neurons remains an unanswered question. Answering this question is fundamental to understanding the physiology and disease of neurons. Here, we have developed an isogeometric analysis (IGA) based platform for material transport simulation in neurite networks. We modeled the transport process by reaction-diffusion-transport equations and represented geometry of the networks using truncated hierarchical tricubic B-splines (THB-spline3D). We solved the Navier-Stokes equations to obtain the velocity field of material transport in the networks. More >

  • Open Access

    ARTICLE

    Computational Machine Learning Representation for the Flexoelectricity Effect in Truncated Pyramid Structures

    Khader M. Hamdia2, Hamid Ghasemi3, Xiaoying Zhuang4,5, Naif Alajlan1, Timon Rabczuk1,2,*

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 79-87, 2019, DOI:10.32604/cmc.2019.05882

    Abstract In this study, machine learning representation is introduced to evaluate the flexoelectricity effect in truncated pyramid nanostructure under compression. A Non-Uniform Rational B-spline (NURBS) based IGA formulation is employed to model the flexoelectricity. We investigate 2D system with an isotropic linear elastic material under plane strain conditions discretized by 45×30 grid of B-spline elements. Six input parameters are selected to construct a deep neural network (DNN) model. They are the Young's modulus, two dielectric permittivity constants, the longitudinal and transversal flexoelectric coefficients and the order of the shape function. The outputs of interest are the More >

  • Open Access

    ARTICLE

    An Improved Integration for Trimmed Geometries in Isogeometric Analysis

    Jinlan Xu1, Ningning Sun1, Laixin Shu1, Timon Rabczuk2, Gang Xu1,*

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 615-632, 2019, DOI:10.32604/cmc.2019.04464

    Abstract Trimming techniques are efficient ways to generate complex geometries in Computer-Aided Design (CAD). In this paper, an improved integration for trimmed geometries in isogeometric analysis (IGA) is proposed. The proposed method can improve the accuracy of the approximation and the condition number of the stiffness matrix. In addition, comparing to the traditional approaches, the trimming techniques can reduce the number of the integration elements with much fewer integration points, which improves the computational efficiency significantly. Several examples are illustrated to show the effectiveness of the proposed approach. More >

Displaying 51-60 on page 6 of 62. Per Page