Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    ARTICLE

    Binaural Speech Separation Algorithm Based on Deep Clustering

    Lin Zhou1,*, Kun Feng1, Tianyi Wang1, Yue Xu1, Jingang Shi2

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 527-537, 2021, DOI:10.32604/iasc.2021.018414 - 11 August 2021

    Abstract Neutral network (NN) and clustering are the two commonly used methods for speech separation based on supervised learning. Recently, deep clustering methods have shown promising performance. In our study, considering that the spectrum of the sound source has time correlation, and the spatial position of the sound source has short-term stability, we combine the spectral and spatial features for deep clustering. In this work, the logarithmic amplitude spectrum (LPS) and the interaural phase difference (IPD) function of each time frequency (TF) unit for the binaural speech signal are extracted as feature. Then, these features of… More >

  • Open Access

    ARTICLE

    Energy Optimization in Multi-UAV-Assisted Edge Data Collection System

    Bin Xu1,2,3, Lu Zhang1, Zipeng Xu1, Yichuan Liu1, Jinming Chai1, Sichong Qin4, Yanfei Sun1,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1671-1686, 2021, DOI:10.32604/cmc.2021.018395 - 21 July 2021

    Abstract In the IoT (Internet of Things) system, the introduction of UAV (Unmanned Aerial Vehicle) as a new data collection platform can solve the problem that IoT devices are unable to transmit data over long distances due to the limitation of their battery energy. However, the unreasonable distribution of UAVs will still lead to the problem of the high total energy consumption of the system. In this work, to deal with the problem, a deployment model of a mobile edge computing (MEC) system based on multi-UAV is proposed. The goal of the model is to minimize… More >

  • Open Access

    ARTICLE

    Safest Route Detection via Danger Index Calculation and K-Means Clustering

    Isha Puthige1, Kartikay Bansal1, Chahat Bindra1, Mahekk Kapur1, Dilbag Singh1, Vipul Kumar Mishra1, Apeksha Aggarwal1, Jinhee Lee2, Byeong-Gwon Kang2, Yunyoung Nam2,*, Reham R. Mostafa3

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2761-2777, 2021, DOI:10.32604/cmc.2021.018128 - 21 July 2021

    Abstract The study aims to formulate a solution for identifying the safest route between any two inputted Geographical locations. Using the New York City dataset, which provides us with location tagged crime statistics; we are implementing different clustering algorithms and analysed the results comparatively to discover the best-suited one. The results unveil the fact that the K-Means algorithm best suits for our needs and delivered the best results. Moreover, a comparative analysis has been performed among various clustering techniques to obtain best results. we compared all the achieved results and using the conclusions we have developed More >

  • Open Access

    ARTICLE

    Community Detection in Aviation Network Based on K-means and Complex Network

    Hang He1,*, Zhenhan Zhao1, Weiwei Luo1, Jinghui Zhang2

    Computer Systems Science and Engineering, Vol.39, No.2, pp. 251-264, 2021, DOI:10.32604/csse.2021.017296 - 20 July 2021

    Abstract With the increasing number of airports and the expansion of their scale, the aviation network has become complex and hierarchical. In order to investigate the complex network characteristics of aviation networks, this paper constructs a Chinese aviation network model and carries out related research based on complex network theory and K-means algorithm. Initially, the P-space model is employed to construct the Chinese aviation network model. Then, complex network indicators such as degree, clustering coefficient, average path length, betweenness and coreness are selected to investigate the complex characteristics and hierarchical features of aviation networks and explore… More >

  • Open Access

    ARTICLE

    Oversampling Method Based on Gaussian Distribution and K-Means Clustering

    Masoud Muhammed Hassan1, Adel Sabry Eesa1,*, Ahmed Jameel Mohammed2, Wahab Kh. Arabo1

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 451-469, 2021, DOI:10.32604/cmc.2021.018280 - 04 June 2021

    Abstract Learning from imbalanced data is one of the greatest challenging problems in binary classification, and this problem has gained more importance in recent years. When the class distribution is imbalanced, classical machine learning algorithms tend to move strongly towards the majority class and disregard the minority. Therefore, the accuracy may be high, but the model cannot recognize data instances in the minority class to classify them, leading to many misclassifications. Different methods have been proposed in the literature to handle the imbalance problem, but most are complicated and tend to simulate unnecessary noise. In this More >

  • Open Access

    ARTICLE

    Early COVID-19 Symptoms Identification Using Hybrid Unsupervised Machine Learning Techniques

    Omer Ali1,2, Mohamad Khairi Ishak1,*, Muhammad Kamran Liaquat Bhatti2

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 747-766, 2021, DOI:10.32604/cmc.2021.018098 - 04 June 2021

    Abstract The COVID-19 virus exhibits pneumonia-like symptoms, including fever, cough, and shortness of breath, and may be fatal. Many COVID-19 contraction experiments require comprehensive clinical procedures at medical facilities. Clinical studies help to make a correct diagnosis of COVID-19, where the disease has already spread to the organs in most cases. Prompt and early diagnosis is indispensable for providing patients with the possibility of early clinical diagnosis and slowing down the disease spread. Therefore, clinical investigations in patients with COVID-19 have revealed distinct patterns of breathing relative to other diseases such as flu and cold, which… More >

  • Open Access

    ARTICLE

    Prediction of Parkinson’s Disease Using Improved Radial Basis Function Neural Network

    Rajalakshmi Shenbaga Moorthy1,*, P. Pabitha2

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3101-3119, 2021, DOI:10.32604/cmc.2021.016489 - 06 May 2021

    Abstract Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression. This paper contributes a novel analytic system for Parkinson’s Disease Prediction mechanism using Improved Radial Basis Function Neural Network (IRBFNN). Particle swarm optimization (PSO) with K-means is used to find the hidden neuron’s centers to improve the accuracy of IRBFNN. The performance of RBFNN is seriously affected by the centers of hidden neurons. Conventionally K-means was used to find the centers of hidden neurons. The problem of sensitiveness to the random initial centroid in K-means… More >

  • Open Access

    ARTICLE

    Driving Pattern Profiling and Classification Using Deep Learning

    Meenakshi Malik1, Rainu Nandal1, Surjeet Dalal2, Vivek Jalglan3, Dac-Nhuong Le4,5,*

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 887-906, 2021, DOI:10.32604/iasc.2021.016272 - 20 April 2021

    Abstract The last several decades have witnessed an exponential growth in the means of transport globally, shrinking geographical distances and connecting the world. The automotive industry has grown by leaps and bounds, with millions of new vehicles being sold annually, be it for personal commuting or for public or commodity transport. However, millions of motor vehicles on the roads also mean an equal number of drivers with varying levels of skill and adherence to safety regulations. Very little has been done in the way of exploring and profiling driving patterns and vehicular usage using real world… More >

  • Open Access

    ARTICLE

    Modeling Bacterial Species: Using Sequence Similarity with Clustering Techniques

    Miguel-Angel Sicilia1,*, Elena García-Barriocanal1, Marçal Mora-Cantallops1, Salvador Sánchez-Alonso1, Lino González2

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1661-1672, 2021, DOI:10.32604/cmc.2021.015874 - 13 April 2021

    Abstract Existing studies have challenged the current definition of named bacterial species, especially in the case of highly recombinogenic bacteria. This has led to considering the use of computational procedures to examine potential bacterial clusters that are not identified by species naming. This paper describes the use of sequence data obtained from MLST databases as input for a k-means algorithm extended to deal with housekeeping gene sequences as a metric of similarity for the clustering process. An implementation of the k-means algorithm has been developed based on an existing source code implementation, and it has been More >

  • Open Access

    ARTICLE

    Determination of Cup to Disc Ratio Using Unsupervised Machine Learning Techniques for Glaucoma Detection

    R. Praveena*, T. R. GaneshBabu

    Molecular & Cellular Biomechanics, Vol.18, No.2, pp. 69-86, 2021, DOI:10.32604/mcb.2021.014622 - 09 April 2021

    Abstract The cup nerve head, optic cup, optic disc ratio and neural rim configuration are observed as important for detecting glaucoma at an early stage in clinical practice. The main clinical indicator of glaucoma optic cup to disc ratio is currently determined manually by limiting the mass screening was potential. This paper proposes the following methods for an automatic cup to disc ratio determination. In the first part of the work, fundus image of the optic disc region is considered. Clustering means K is used automatically to extract the optic disc whereas K-value is automatically selected… More >

Displaying 51-60 on page 6 of 88. Per Page