Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    On-Street Parking Space Detection Using YOLO Models and Recommendations Based on KD-Tree Suitability Search

    Ibrahim Yahaya Garta, William Eric Manongga, Su-Wen Huang, Rung-Ching Chen*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4457-4471, 2025, DOI:10.32604/cmc.2025.067149 - 23 October 2025

    Abstract Unlike the detection of marked on-street parking spaces, detecting unmarked spaces poses significant challenges due to the absence of clear physical demarcation and uneven gaps caused by irregular parking. In urban cities with heavy traffic flow, these challenges can result in traffic disruptions, rear-end collisions, sideswipes, and congestion as drivers struggle to make decisions. We propose a real-time detection system for on-street parking spaces using YOLO models and recommend the most suitable space based on KD-tree search. Lightweight versions of YOLOv5, YOLOv7-tiny, and YOLOv8 with different architectures are trained. Among the models, YOLOv5s with SPPF… More >

  • Open Access

    ARTICLE

    Density Clustering Algorithm Based on KD-Tree and Voting Rules

    Hui Du, Zhiyuan Hu*, Depeng Lu, Jingrui Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3239-3259, 2024, DOI:10.32604/cmc.2024.046314 - 15 May 2024

    Abstract Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets with uneven density. Additionally, they incur substantial computational costs when applied to high-dimensional data due to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset and compute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similarity matrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a vote for the point with the highest density among its KNN. By utilizing the vote counts More >

  • Open Access

    ARTICLE

    Improved Data Stream Clustering Method: Incorporating KD-Tree for Typicality and Eccentricity-Based Approach

    Dayu Xu1,#, Jiaming Lü1,#, Xuyao Zhang2, Hongtao Zhang1,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2557-2573, 2024, DOI:10.32604/cmc.2024.045932 - 27 February 2024

    Abstract Data stream clustering is integral to contemporary big data applications. However, addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research. This paper aims to elevate the efficiency and precision of data stream clustering, leveraging the TEDA (Typicality and Eccentricity Data Analysis) algorithm as a foundation, we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm. The original TEDA algorithm, grounded in the concept of “Typicality and Eccentricity Data Analytics”, represents an evolving and recursive method that requires… More >

Displaying 1-10 on page 1 of 3. Per Page