Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (355)
  • Open Access

    ARTICLE

    Constraint Intensity-Driven Evolutionary Multitasking for Constrained Multi-Objective Optimization

    Leyu Zheng1, Mingming Xiao1,*, Yi Ren2, Ke Li1, Chang Sun1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072036 - 12 January 2026

    Abstract In a wide range of engineering applications, complex constrained multi-objective optimization problems (CMOPs) present significant challenges, as the complexity of constraints often hampers algorithmic convergence and reduces population diversity. To address these challenges, we propose a novel algorithm named Constraint Intensity-Driven Evolutionary Multitasking (CIDEMT), which employs a two-stage, tri-task framework to dynamically integrates problem structure and knowledge transfer. In the first stage, three cooperative tasks are designed to explore the Constrained Pareto Front (CPF), the Unconstrained Pareto Front (UPF), and the ε-relaxed constraint boundary, respectively. A CPF-UPF relationship classifier is employed to construct a problem-type-aware… More >

  • Open Access

    ARTICLE

    Task-Structured Curriculum Learning for Multi-Task Distillation: Enhancing Step-by-Step Knowledge Transfer in Language Models

    Ahmet Ezgi1, Aytuğ Onan2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071301 - 12 January 2026

    Abstract Knowledge distillation has become a standard technique for compressing large language models into efficient student models, but existing methods often struggle to balance prediction accuracy with explanation quality. Recent approaches such as Distilling Step-by-Step (DSbS) introduce explanation supervision, yet they apply it in a uniform manner that may not fully exploit the different learning dynamics of prediction and explanation. In this work, we propose a task-structured curriculum learning (TSCL) framework that structures training into three sequential phases: (i) prediction-only, to establish stable feature representations; (ii) joint prediction–explanation, to align task outputs with rationale generation; and (iii)… More >

  • Open Access

    ARTICLE

    Support Vector–Guided Class-Incremental Learning: Discriminative Replay with Dual-Alignment Distillation

    Moyi Zhang, Yixin Wang*, Yu Cheng

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071021 - 12 January 2026

    Abstract Modern intelligent systems, such as autonomous vehicles and face recognition, must continuously adapt to new scenarios while preserving their ability to handle previously encountered situations. However, when neural networks learn new classes sequentially, they suffer from catastrophic forgetting—the tendency to lose knowledge of earlier classes. This challenge, which lies at the core of class-incremental learning, severely limits the deployment of continual learning systems in real-world applications with streaming data. Existing approaches, including rehearsal-based methods and knowledge distillation techniques, have attempted to address this issue but often struggle to effectively preserve decision boundaries and discriminative features… More >

  • Open Access

    ARTICLE

    Defect Identification Method of Power Grid Secondary Equipment Based on Coordination of Knowledge Graph and Bayesian Network Fusion

    Jun Xiong*, Peng Yang, Bohan Chen, Zeming Chen

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069438 - 27 December 2025

    Abstract The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system. However, various defects could be produced in the secondary equipment during long-term operation. The complex relationship between the defect phenomenon and multi-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods, which limits the real-time and accuracy of defect identification. Therefore, a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed. The defect data of secondary equipment is… More >

  • Open Access

    ARTICLE

    Dynamic Knowledge Graph Reasoning Based on Distributed Representation Learning

    Qiuru Fu1, Shumao Zhang1, Shuang Zhou1, Jie Xu1,*, Changming Zhao2, Shanchao Li3, Du Xu1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070493 - 09 December 2025

    Abstract Knowledge graphs often suffer from sparsity and incompleteness. Knowledge graph reasoning is an effective way to address these issues. Unlike static knowledge graph reasoning, which is invariant over time, dynamic knowledge graph reasoning is more challenging due to its temporal nature. In essence, within each time step in a dynamic knowledge graph, there exists structural dependencies among entities and relations, whereas between adjacent time steps, there exists temporal continuity. Based on these structural and temporal characteristics, we propose a model named “DKGR-DR” to learn distributed representations of entities and relations by combining recurrent neural networks More >

  • Open Access

    ARTICLE

    APPLE_YOLO: Apple Detection Method Based on Channel Pruning and Knowledge Distillation in Complicated Environments

    Xin Ma1,2, Jin Lei3,4,*, Chenying Pei4, Chunming Wu4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.069353 - 09 December 2025

    Abstract This study proposes a lightweight apple detection method employing cascaded knowledge distillation (KD) to address the critical challenges of excessive parameters and high deployment costs in existing models. We introduce a Lightweight Feature Pyramid Network (LFPN) integrated with Lightweight Downsampling Convolutions (LDConv) to substantially reduce model complexity without compromising accuracy. A Lightweight Multi-channel Attention (LMCA) mechanism is incorporated between the backbone and neck networks to effectively suppress complex background interference in orchard environments. Furthermore, model size is compressed via Group_Slim channel pruning combined with a cascaded distillation strategy. Experimental results demonstrate that the proposed model More >

  • Open Access

    ARTICLE

    Learning Time Embedding for Temporal Knowledge Graph Completion

    Jinglu Chen1, Mengpan Chen2, Wenhao Zhang2,*, Huihui Ren2, Daniel Dajun Zeng1,2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.069331 - 09 December 2025

    Abstract Temporal knowledge graph completion (TKGC), which merges temporal information into traditional static knowledge graph completion (SKGC), has garnered increasing attention recently. Among numerous emerging approaches, translation-based embedding models constitute a prominent approach in TKGC research. However, existing translation-based methods typically incorporate timestamps into entities or relations, rather than utilizing them independently. This practice fails to fully exploit the rich semantics inherent in temporal information, thereby weakening the expressive capability of models. To address this limitation, we propose embedding timestamps, like entities and relations, in one or more dedicated semantic spaces. After projecting all embeddings into… More >

  • Open Access

    ARTICLE

    A Blockchain-Based Efficient Verification Scheme for Context Semantic-Aware Ciphertext Retrieval

    Haochen Bao1, Lingyun Yuan1,2,*, Tianyu Xie1,2, Han Chen1, Hui Dai1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-30, 2026, DOI:10.32604/cmc.2025.069240 - 10 November 2025

    Abstract In the age of big data, ensuring data privacy while enabling efficient encrypted data retrieval has become a critical challenge. Traditional searchable encryption schemes face difficulties in handling complex semantic queries. Additionally, they typically rely on honest but curious cloud servers, which introduces the risk of repudiation. Furthermore, the combined operations of search and verification increase system load, thereby reducing performance. Traditional verification mechanisms, which rely on complex hash constructions, suffer from low verification efficiency. To address these challenges, this paper proposes a blockchain-based contextual semantic-aware ciphertext retrieval scheme with efficient verification. Building on existing… More >

  • Open Access

    ARTICLE

    Automatic Detection of Health-Related Rumors: A Dual-Graph Collaborative Reasoning Framework Based on Causal Logic and Knowledge Graph

    Ning Wang, Haoran Lyu*, Yuchen Fu

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-31, 2026, DOI:10.32604/cmc.2025.068784 - 10 November 2025

    Abstract With the widespread use of social media, the propagation of health-related rumors has become a significant public health threat. Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures, with only a few recent approaches attempting causal inference; however, these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors. In this study, we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts, holding significant potential for health rumor detection. To this end, we… More >

  • Open Access

    ARTICLE

    LLM-KE: An Ontology-Aware LLM Methodology for Military Domain Knowledge Extraction

    Yu Tao1, Ruopeng Yang1,2, Yongqi Wen1,*, Yihao Zhong1, Kaige Jiao1, Xiaolei Gu1,2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-17, 2026, DOI:10.32604/cmc.2025.068670 - 10 November 2025

    Abstract Since Google introduced the concept of Knowledge Graphs (KGs) in 2012, their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition, extraction, representation, modeling, fusion, computation, and storage. Within this framework, knowledge extraction, as the core component, directly determines KG quality. In military domains, traditional manual curation models face efficiency constraints due to data fragmentation, complex knowledge architectures, and confidentiality protocols. Meanwhile, crowdsourced ontology construction approaches from general domains prove non-transferable, while human-crafted ontologies struggle with generalization deficiencies. To address these challenges, this study proposes an Ontology-Aware LLM Methodology for Military Domain More >

Displaying 1-10 on page 1 of 355. Per Page