Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    MSCNN-LSTM Model for Predicting Return Loss of the UHF Antenna in HF-UHF RFID Tag Antenna

    Zhao Yang1, Yuan Zhang1, Lei Zhu2,*, Lei Huang1, Fangyu Hu3, Yanping Du1, Xiaowei Li1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2889-2904, 2023, DOI:10.32604/cmc.2023.037297

    Abstract High-frequency (HF) and ultrahigh-frequency (UHF) dual-band radio frequency identification (RFID) tags with both near-field and far-field communication can meet different application scenarios. However, it is time-consuming to calculate the return loss of a UHF antenna in a dual-band tag antenna using electromagnetic (EM) simulators. To overcome this, the present work proposes a model of a multi-scale convolutional neural network stacked with long and short-term memory (MSCNN-LSTM) for predicting the return loss of UHF antennas instead of EM simulators. In the proposed MSCNN-LSTM, the MSCNN has three branches, which include three convolution layers with different kernel sizes and numbers. Therefore, MSCNN… More >

  • Open Access

    ARTICLE

    Competitive Multi-Verse Optimization with Deep Learning Based Sleep Stage Classification

    Anwer Mustafa Hilal1,*, Amal Al-Rasheed2, Jaber S. Alzahrani3, Majdy M. Eltahir4, Mesfer Al Duhayyim5, Nermin M. Salem6, Ishfaq Yaseen1, Abdelwahed Motwakel1

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1249-1263, 2023, DOI:10.32604/csse.2023.030603

    Abstract Sleep plays a vital role in optimum working of the brain and the body. Numerous people suffer from sleep-oriented illnesses like apnea, insomnia, etc. Sleep stage classification is a primary process in the quantitative examination of polysomnographic recording. Sleep stage scoring is mainly based on experts’ knowledge which is laborious and time consuming. Hence, it can be essential to design automated sleep stage classification model using machine learning (ML) and deep learning (DL) approaches. In this view, this study focuses on the design of Competitive Multi-verse Optimization with Deep Learning Based Sleep Stage Classification (CMVODL-SSC) model using Electroencephalogram (EEG) signals.… More >

  • Open Access

    ARTICLE

    Translation of English Language into Urdu Language Using LSTM Model

    Sajadul Hassan Kumhar1, Syed Immamul Ansarullah2, Akber Abid Gardezi3, Shafiq Ahmad4, Abdelaty Edrees Sayed4, Muhammad Shafiq5,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3899-3912, 2023, DOI:10.32604/cmc.2023.032290

    Abstract English to Urdu machine translation is still in its beginning and lacks simple translation methods to provide motivating and adequate English to Urdu translation. In order to make knowledge available to the masses, there should be mechanisms and tools in place to make things understandable by translating from source language to target language in an automated fashion. Machine translation has achieved this goal with encouraging results. When decoding the source text into the target language, the translator checks all the characteristics of the text. To achieve machine translation, rule-based, computational, hybrid and neural machine translation approaches have been proposed to… More >

  • Open Access

    ARTICLE

    Development of Voice Control Algorithm for Robotic Wheelchair Using NIN and LSTM Models

    Mohsen Bakouri1,2,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2441-2456, 2022, DOI:10.32604/cmc.2022.025106

    Abstract In this work, we developed and implemented a voice control algorithm to steer smart robotic wheelchairs (SRW) using the neural network technique. This technique used a network in network (NIN) and long short-term memory (LSTM) structure integrated with a built-in voice recognition algorithm. An Android Smartphone application was designed and configured with the proposed method. A Wi-Fi hotspot was used to connect the software and hardware components of the system in an offline mode. To operate and guide SRW, the design technique proposed employing five voice commands (yes, no, left, right, no, and stop) via the Raspberry Pi and DC… More >

  • Open Access

    ARTICLE

    Modeling of Chaotic Political Optimizer for Crop Yield Prediction

    Gurram Sunitha1,*, M. N. Pushpalatha2, A. Parkavi3, Prasanthi Boyapati4, Ranjan Walia5, Rachna Kohar6, Kashif Qureshi7

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 423-437, 2022, DOI:10.32604/iasc.2022.024757

    Abstract Crop yield is an extremely difficult trait identified using many factors like genotype, environment and their interaction. Accurate Crop Yield Prediction (CYP) necessitates the basic understanding of the functional relativity among yields and the collaborative factor. Disclosing such connection requires both wide-ranging datasets and an efficient model. The CYP is important to accomplish irrigation scheduling and assessing labor necessities for reaping and storing. Predicting yield using various kinds of irrigation is effective for optimizing resources, but CYP is a difficult process owing to the existence of distinct factors. Recently, Deep Learning (DL) approaches offer solutions to complicated data like weather… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Enabled Air Pollution Monitoring in ITS Environment

    Ashit Kumar Dutta1, Jenyfal Sampson2, Sultan Ahmad3, T. Avudaiappan4, Kanagaraj Narayanasamy5,*, Irina V. Pustokhina6, Denis A. Pustokhin7

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1157-1172, 2022, DOI:10.32604/cmc.2022.024109

    Abstract Intelligent Transportation Systems (ITS) have become a vital part in improving human lives and modern economy. It aims at enhancing road safety and environmental quality. There is a tremendous increase observed in the number of vehicles in recent years, owing to increasing population. Each vehicle has its own individual emission rate; however, the issue arises when the emission rate crosses a standard value. Owing to the technological advances made in Artificial Intelligence (AI) techniques, it is easy to leverage it to develop prediction approaches so as to monitor and control air pollution. The current research paper presents Oppositional Shark Shell… More >

  • Open Access

    ARTICLE

    Comparative Study on Deformation Prediction Models of Wuqiangxi Concrete Gravity Dam Based on Monitoring Data

    Songlin Yang1,2, Xingjin Han1,2, Chufeng Kuang1,2, Weihua Fang3, Jianfei Zhang4, Tiantang Yu4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 49-72, 2022, DOI:10.32604/cmes.2022.018325

    Abstract The deformation prediction models of Wuqiangxi concrete gravity dam are developed, including two statistical models and a deep learning model. In the statistical models, the reliable monitoring data are firstly determined with Lahitte criterion; then, the stepwise regression and partial least squares regression models for deformation prediction of concrete gravity dam are constructed in terms of the reliable monitoring data, and the factors of water pressure, temperature and time effect are considered in the models; finally, according to the monitoring data from 2006 to 2020 of five typical measuring points including J23 (on dam section ), J33 (on dam section… More >

  • Open Access

    ARTICLE

    Attention-Based Bi-LSTM Model for Arabic Depression Classification

    Abdulqader M. Almars*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3091-3106, 2022, DOI:10.32604/cmc.2022.022609

    Abstract Depression is a common mental health issue that affects a large percentage of people all around the world. Usually, people who suffer from this mood disorder have issues such as low concentration, dementia, mood swings, and even suicide. A social media platform like Twitter allows people to communicate as well as share photos and videos that reflect their moods. Therefore, the analysis of social media content provides insight into individual moods, including depression. Several studies have been conducted on depression detection in English and less in Arabic. The detection of depression from Arabic social media lags behind due the complexity… More >

  • Open Access

    ARTICLE

    Encoder-Decoder Based LSTM Model to Advance User QoE in 360-Degree Video

    Muhammad Usman Younus1,*, Rabia Shafi2, Ammar Rafiq3, Muhammad Rizwan Anjum4, Sharjeel Afridi5, Abdul Aleem Jamali6, Zulfiqar Ali Arain7

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2617-2631, 2022, DOI:10.32604/cmc.2022.022236

    Abstract The development of multimedia content has resulted in a massive increase in network traffic for video streaming. It demands such types of solutions that can be addressed to obtain the user's Quality-of-Experience (QoE). 360-degree videos have already taken up the user's behavior by storm. However, the users only focus on the part of 360-degree videos, known as a viewport. Despite the immense hype, 360-degree videos convey a loathsome side effect about viewport prediction, making viewers feel uncomfortable because user viewport needs to be pre-fetched in advance. Ideally, we can minimize the bandwidth consumption if we know what the user motion… More >

  • Open Access

    ARTICLE

    Method of Bidirectional LSTM Modelling for the Atmospheric Temperature

    Shuo Liang1, Dingcheng Wang1,*, Jingrong Wu1, Rui Wang1, Ruiqi Wang2

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 701-714, 2021, DOI:10.32604/iasc.2021.020010

    Abstract Atmospheric temperature forecast plays an important role in weather forecast and has a significant impact on human daily and economic life. However, due to the complexity and uncertainty of the atmospheric system, exploring advanced forecasting methods to improve the accuracy of meteorological prediction has always been a research topic for scientists. With the continuous improvement of computer performance and data acquisition technology, meteorological data has gained explosive growth, which creates the necessary hardware support conditions for more accurate weather forecast. The more accurate forecast results need advanced weather forecast methods suitable for hardware. Therefore, this paper proposes a deep learning… More >

Displaying 1-10 on page 1 of 13. Per Page