Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,731)
  • Open Access

    ARTICLE

    Numerical Formulations for the Prediction of Deformation, Strain and Stress of Un-patterned ETFE Cushions

    N.J. Bartle1, P.D. Gosling1

    CMC-Computers, Materials & Continua, Vol.20, No.1, pp. 19-62, 2010, DOI:10.3970/cmc.2010.020.019

    Abstract ETFE cushions are increasingly being used to form high-profile facades and structural forms. This investigation aims to extend an analytical theory of large deformation in order to predict the shape and stress distributions of an un-patterned square ETFE cushion without the need to resort to discretised numerical methods. In order to assess the validity of the theoretical procedure a prototype cushion has been analysed using a finite element simulation. The theoretical procedure is also compared with alternative approximate equations proposed for the design of ETFE cushions. More >

  • Open Access

    ARTICLE

    The Time-Marching Method of Fundamental Solutions for Multi-Dimensional Telegraph Equations

    C.Y. Lin1, M.H. Gu1, D.L. Young1,2

    CMC-Computers, Materials & Continua, Vol.18, No.1, pp. 43-68, 2010, DOI:10.3970/cmc.2010.018.043

    Abstract The telegraph equations are solved by using the meshless numerical method called the time-marching method of fundamental solutions (TMMFS) in this paper. The present method is based on the method of fundamental solutions, the method of particular solutions and the Houbolt finite difference scheme. The TMMFS is a meshless numerical method, and has the advantages of no mesh building and numerical quadrature. Therefore in this study we eventually solved the multi-dimensional telegraph equation problems in irregular domain. There are totally six numerical examples demonstrated, in order they are one-dimensional telegraph equation, one-dimensional non-decaying telegraph problem, two-dimensional telegraph equation in irregular… More >

  • Open Access

    ARTICLE

    Stable Boundary and Internal Data Reconstruction in Two-Dimensional Anisotropic Heat Conduction Cauchy Problems Using Relaxation Procedures for an Iterative MFS Algorithm

    Liviu Marin1

    CMC-Computers, Materials & Continua, Vol.17, No.3, pp. 233-274, 2010, DOI:10.3970/cmc.2010.017.233

    Abstract We investigate two algorithms involving the relaxation of either the given boundary temperatures (Dirichlet data) or the prescribed normal heat fluxes (Neumann data) on the over-specified boundary in the case of the iterative algorithm of Kozlov91 applied to Cauchy problems for two-dimensional steady-state anisotropic heat conduction (the Laplace-Beltrami equation). The two mixed, well-posed and direct problems corresponding to every iteration of the numerical procedure are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is chosen according to the generalized cross-validation (GCV)… More >

  • Open Access

    ARTICLE

    Space-Time Adaptive Fup Multi-Resolution Approach for Boundary-Initial Value Problems

    Hrvoje Gotovac1, Vedrana Kozulić2, Blaž Gotovac1

    CMC-Computers, Materials & Continua, Vol.15, No.3, pp. 173-198, 2010, DOI:10.3970/cmc.2010.015.173

    Abstract The space-time Adaptive Fup Collocation Method (AFCM) for solving boundary-initial value problems is presented. To solve the one-dimensional initial boundary value problem, we convert the problem into a two-dimensional boundary value problem. This quasi-boundary value problem is then solved simultaneously in the space-time domain with a collocation technique and by using atomic Fup basis functions. The proposed method is a generally meshless methodology because it requires only the addition of collocation points and basis functions over the domain, instead of the classical domain discretization and numerical integration. The grid is adapted progressively by setting the threshold as a direct measure… More >

  • Open Access

    ARTICLE

    A Quasi-Boundary Semi-Analytical Approach for Two-Dimensional Backward Heat Conduction Problems

    Chih-Wen Chang1, Chein-Shan Liu2, Jiang-Ren Chang3

    CMC-Computers, Materials & Continua, Vol.15, No.1, pp. 45-66, 2010, DOI:10.3970/cmc.2010.015.045

    Abstract In this article, we propose a semi-analytical method to tackle the two-dimensional backward heat conduction problem (BHCP) by using a quasi-boundary idea. First, the Fourier series expansion technique is employed to calculate the temperature field u(x, y, t) at any time t < T. Second, we consider a direct regularization by adding an extra termau(x, y, 0) to reach a second-kind Fredholm integral equation for u(x, y, 0). The termwise separable property of the kernel function permits us to obtain a closed-form regularized solution. Besides, a strategy to choose the regularization parameter is suggested. When several numerical examples were tested,… More >

  • Open Access

    ARTICLE

    EBSD-Based Microscopy: Resolution of Dislocation Density

    Brent L. Adams, Joshua Kacher

    CMC-Computers, Materials & Continua, Vol.14, No.3, pp. 185-196, 2009, DOI:10.3970/cmc.2009.014.185

    Abstract Consideration is given to the resolution of dislocation density afforded by EBSD-based scanning electron microscopy. Comparison between the conventional Hough- and the emerging high-resolution cross-correlation-based approaches is made. It is illustrated that considerable care must be exercised in selecting a step size (Burger's circuit size) for experimental measurements. Important variables affecting this selection include the dislocation density and the physical size and density of dislocation dipole and multi-pole components of the structure. It is also illustrated that simulations can be useful to the interpretation of experimental recoveries. More >

  • Open Access

    ARTICLE

    An Eulerian-Based Formulation for Studying the Evolution of the Microstructure under Plastic Deformations

    S.Ahmadi1, B.L.Adams1 , D.T.Fullwood1

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 141-170, 2009, DOI:10.3970/cmc.2009.014.141

    Abstract In this paper, a model is introduced to examine the evolution of the microstructure function under plastic deformations. This model is based upon a double continuity relationship that conserves both material particles in the mass space and orientations in the orientation space. An Eulerian description of the motion of material particles and orientations is considered, and continuity relations are derived for both spaces. To show how the proposed model works, two different case studies are provided. In the mass space, the continuity relation is used to examine the evolution of the microstructure function of a two-phase (isotropic) material; while, in… More >

  • Open Access

    ARTICLE

    Convergence Properties of Genetic Algorithmsin a Wide Variety of Noisy Environments

    TakehikoNakama1

    CMC-Computers, Materials & Continua, Vol.14, No.1, pp. 35-60, 2009, DOI:10.3970/cmc.2009.014.035

    Abstract Random noise perturbs objective functions in practical optimization problems, and genetic algorithms (GAs) have been proposed as an effective optimization tool for dealing with noisy objective functions. In this paper, we investigate GAs in a variety of noisy environments where fitness perturbation can occur in any form-for example, fitness evaluations can be concurrently disturbed by additive and multiplicative noise. We reveal the convergence properties of GAs by constructing and analyzing a Markov chain that explicitly models the evolution of the algorithms in noisy environments. We compute the one-step transition probabilities of the Markov chain and show that the chain has… More >

  • Open Access

    ARTICLE

    Three-Dimensional Solutions of Functionally Graded Piezo-Thermo-Elastic Shells and Plates Using a Modified Pagano Method

    Chih-Ping Wu1,2, Shao-En Huang2

    CMC-Computers, Materials & Continua, Vol.12, No.3, pp. 251-282, 2009, DOI:10.3970/cmc.2009.012.251

    Abstract A modified Pagano method is developed for the three-dimensional (3D) coupled analysis of simply-supported, doubly curved functionally graded (FG) piezo-thermo-elastic shells under thermal loads. Four different loading conditions, applied on the lateral surfaces of the shells, are considered. The material properties of FG shells are regarded as heterogeneous through the thickness coordinate, and then specified to obey an exponent-law dependent on this. The Pagano method, conventionally used for the analysis of multilayered composite elastic plates/shells, is modified to be feasible for the present analysis of FG piezo-thermo-elastic plates/shells. The modifications include that a displacement-based formulation is replaced by a mixed… More >

  • Open Access

    ARTICLE

    An Alternating Iterative MFS Algorithm for the Cauchy Problem in Two-Dimensional Anisotropic Heat Conduction

    LiviuMarin 1

    CMC-Computers, Materials & Continua, Vol.12, No.1, pp. 71-100, 2009, DOI:10.3970/cmc.2009.012.071

    Abstract In this paper, the alternating iterative algorithm originally proposed by Kozlov, Maz'ya and Fomin (1991) is numerically implemented for the Cauchy problem in anisotropic heat conduction using a meshless method. Every iteration of the numerical procedure consists of two mixed, well-posed and direct problems which are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is chosen according to the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point where the accumulation of noise… More >

Displaying 1711-1720 on page 172 of 1731. Per Page