Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (113)
  • Open Access

    ARTICLE

    Characterization of Pore Structure and Simulation of Pore-Scale Flow in Tight Sandstone Reservoirs

    Min Feng*, Long Wang, Lei Sun, Bo Yang, Wei Wang, Jianning Luo, Yan Wang, Ping Liu

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 573-587, 2025, DOI:10.32604/fdmp.2024.056421 - 01 April 2025

    Abstract This study sheds light on how pore structure characteristics and varying dynamic pressure conditions influence the permeability of tight sandstone reservoirs, with a particular focus on the Paleozoic reservoirs in the Qingshimao Gas Field. Using CT scans of natural core samples, a three-dimensional digital core was constructed. The maximum ball method was applied to extract a related pore network model, and the pore structure characteristics of the core samples, such as pore radius, throat radius, pore volume, and coordination number, were quantitatively evaluated. The analysis revealed a normally distributed pore radius, suggesting a high degree… More >

  • Open Access

    ARTICLE

    Delocalized Nonlinear Vibrational Modes in Bcc Lattice for Testing and Improving Interatomic Potentials

    Denis S. Ryabov1, Igor V. Kosarev2,3, Daxing Xiong4, Aleksey A. Kudreyko5, Sergey V. Dmitriev2,6,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3797-3820, 2025, DOI:10.32604/cmc.2025.062079 - 06 March 2025

    Abstract Molecular dynamics (MD) is a powerful method widely used in materials science and solid-state physics. The accuracy of MD simulations depends on the quality of the interatomic potentials. In this work, a special class of exact solutions to the equations of motion of atoms in a body-centered cubic (bcc) lattice is analyzed. These solutions take the form of delocalized nonlinear vibrational modes (DNVMs) and can serve as an excellent test of the accuracy of the interatomic potentials used in MD modeling for bcc crystals. The accuracy of the potentials can be checked by comparing the… More >

  • Open Access

    ARTICLE

    Thermal Assessment of a Differentially Heated Nanofluid-Filled Cavity Containing an Obstacle

    Abdelilah Makaoui1, El Bachir Lahmer1,*, Jaouad Benhamou1,2, Mohammed Amine Moussaoui1, Ahmed Mezrhab1

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 207-230, 2025, DOI:10.32604/fhmt.2024.060166 - 26 February 2025

    Abstract This study focuses on numerically investigating thermal behavior within a differentially heated cavity filled with nanofluid with and without obstacles. Numerical comparison with previous studies proves the consistency and efficacy of the lattice Boltzmann method associated with a single relaxation time and its possibility of studying the nanofluid and heat transfer with high accuracy. Key parameters, including nanoparticle type and concentration, Rayleigh number, fluid basis, and obstacle position and dimension, were examined to identify optimal conditions for enhancing heat transfer quality. Principal findings indicated that increasing the Rayleigh number boosts buoyancy forces and alters vortex More > Graphic Abstract

    Thermal Assessment of a Differentially Heated Nanofluid-Filled Cavity Containing an Obstacle

  • Open Access

    ARTICLE

    Imbibition Front and Phase Distribution in Shale Based on Lattice Boltzmann Method

    Li Lu1,2,3, Yadong Huang2,4, Kuo Liu2, Xuhui Zhang3,5, Xiaobing Lu3,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2173-2190, 2025, DOI:10.32604/cmes.2025.059045 - 27 January 2025

    Abstract To study the development of imbibition such as the imbibition front and phase distribution in shale, the Lattice Boltzmann Method (LBM) is used to study the imbibition processes in the pore-throat network of shale. Through dimensional analysis, four dimensionless parameters affecting the imbibition process were determined. A color gradient model of LBM was used in computation based on a real core pore size distribution. The numerical results show that the four factors have great effects on imbibition. The impact of each factor is not monotonous. The imbibition process is the comprehensive effect of all aspects. More >

  • Open Access

    ARTICLE

    Analysis of Linear and Nonlinear Vibrations of Composite Rectangular Sandwich Plates with Lattice Cores

    Alireza Moradi, Alireza Shaterzadeh*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 223-257, 2025, DOI:10.32604/cmc.2024.059441 - 03 January 2025

    Abstract For the first time, the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work. The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it. For this purpose, the partial differential equations of motion have been derived based on the first-order shear deformation theory, employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations. Then, the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation… More >

  • Open Access

    ARTICLE

    Simulations of the Boiling Process on a Porous Heater by Lattice Boltzmann Method

    Alexander Fedoseev*, Mikhail Salnikov

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1679-1694, 2024, DOI:10.32604/fhmt.2024.056999 - 19 December 2024

    Abstract In order to research the process of boiling occurring on a porous surface, a model of multiple blocks was developed. The mathematical basis of these blocks is the lattice Boltzmann method in combination with heat transfer equation. The reported complex allows one to obtain the boiling curves for various wall superheats and to find the optimal parameters of a porous heater in terms of heat transfer enhancement. The porous heater structure is specified as a skeleton of square metal heaters located in the lower part of the computational domain. The calculations were performed for the… More > Graphic Abstract

    Simulations of the Boiling Process on a Porous Heater by Lattice Boltzmann Method

  • Open Access

    PROCEEDINGS

    The Quasi-Static Compressive Properties and Energy Absorption Behavior of Alumina/Aluminum Lattice Structure Composites

    Han Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012843

    Abstract Aluminum lattice structures have the advantages of lightweight, high specific strength/stiffness and excellent plasticity, while alumina ceramic lattice structures usually show high strength and significant brittleness. Therefore, alumina/aluminum interpenetrating composites can combine two distinct mechanical properties and show superior performance, which is beneficial to applications in aerospace and military industries. In this study, alumina ceramic lattice structures were prepared by additive manufacturing (AM) and used as infiltration skeleton. The molten aluminum was then infiltrated into alumina ceramic lattice structures. By this method, the alumina/aluminum ordered structure composites were prepared. Through mechanical experiments and finite element More >

  • Open Access

    PROCEEDINGS

    Numerical Study of Coupled Cilia and Mucus in Herschel-Bulkley Flows

    Qian Mao1, Umberto D’Ortona1, Julien Favier1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012535

    Abstract The human airways are protected by two fluid layers, a periciliary layer (PCL) covering the epithelial surface and a mucus layer on top of the PCL. The cilia are almost immersed in the PCL and interact with the mucus through their tips. The mucus is often described as a yield stress and shear thinning fluid. The effect of these non-Newtonian properties on ciliary coordination and mucus transport was investigated using the Lattice-Boltzmann method. The non-Newtonian mucus was modelled using the Herschel-Bulkley model. Three mucus flow regimes were observed and analysed in a wide range of… More >

  • Open Access

    PROCEEDINGS

    From the Hybrid Lattice Boltzmann Model for Compressible Flows to a Unified Finite Volume solver

    Jinhua Lu1,*, Song Zhao1, Pierre Boivin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011180

    Abstract The hybrid lattice Boltzmann model [1] for compressible flows uses the lattice Boltzmann method (LBM) to simulate the flow field and the finite volume scheme for the energy field. It inherits the good numerical stability and low dissipation [2] of LBM and avoids the complexity of solving all governing equations within the LBM framework. However, it still faces three issues. First, for compressible flows, the equilibrium distribution functions must exactly recover third-order moments, but it cannot be achieved for the simple DmQn (m dimensions and n discrete phase velocities) models involving only neighboring nodes [3],… More >

  • Open Access

    PROCEEDINGS

    Design of 3D Printable Microlattices for Sound Absorption

    Xinwei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011083

    Abstract The emergence of 3D printing opens new possibilities for the development of advanced and innovative metamaterials, particularly in the realm of microlattices. Microlattices are characterized as periodic cellular solids with submillimeter-sized features, such as struts, shells, or plates, arranged spatially in a three-dimensional way. Herein, based on four published studies, we provide a perspective on the design, employing analytical and numerical methods, as well as the performance of 3D-printed microlattices for sound absorption.
    The first study focuses on face-centered cubic-based plate and truss structures [1]. Impedance tube measurements reveal that all the microlattices display absorption curves… More >

Displaying 1-10 on page 1 of 113. Per Page