Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    Double Optimal Regularization Algorithms for Solving Ill-Posed Linear Problems under Large Noise

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.1, pp. 1-39, 2015, DOI:10.3970/cmes.2015.104.001

    Abstract A double optimal solution of an n-dimensional system of linear equations Ax = b has been derived in an affine m « n. We further develop a double optimal iterative algorithm (DOIA), with the descent direction z being solved from the residual equation Az = r0 by using its double optimal solution, to solve ill-posed linear problem under large noise. The DOIA is proven to be absolutely convergent step-by-step with the square residual error ||r||2 = ||b - Ax||2 being reduced by a positive quantity ||Azk||2 at each iteration step, which is found to be better than those algorithms based… More >

  • Open Access

    ARTICLE

    A Novel Method for Solving Ill-conditioned Systems of Linear Equations with Extreme Physical Property Contrasts

    Cheng-Yu Ku1

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.6, pp. 409-434, 2013, DOI:10.3970/cmes.2013.096.409

    Abstract This paper proposes a novel method, named the dynamical Jacobianinverse free method (DJIFM), with the incorporation of a two-sided equilibrium algorithm for solving ill-conditioned systems of linear equations with extreme physical property contrasts. The DJIFM is based on the construction of a scalar homotopy function for transforming the vector function of linear or nonlinear algebraic equations into a time-dependent scalar function by introducing a fictitious time-like variable. The DJIFM demonstrated great numerical stability for solving linear or nonlinear algebraic equations, particularly for systems involving ill-conditioned Jacobian or poor initial values that cause convergence problems. With the incorporation of a newly… More >

  • Open Access

    ARTICLE

    Fuzzy Analysis of Structures with Imprecisely Defined Properties

    Diptiranjan Behera1, Snehashish Chakraverty2

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.5, pp. 317-337, 2013, DOI:10.3970/cmes.2013.096.317

    Abstract This paper targets to analyse the static response of structures with fuzzy parameters using fuzzy finite element method. Here the material, geometrical properties and external load applied to the structures are taken as uncertain. Uncertainties presents in the parameters are modelled through convex normalised fuzzy sets. Fuzzy finite element method converts the problem into fuzzy or fully fuzzy system of linear equations for static analysis. As such here, two new methods are proposed to solve the fuzzy and fully fuzzy system of linear equations. Numerical examples for structures with uncertain system parameters that are in term of triangular fuzzy number… More >

  • Open Access

    ARTICLE

    A Novel Method for Solving One-, Two- and Three-Dimensional Problems with Nonlinear Equation of the Poisson Type

    S.Yu. Reutskiy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.4, pp. 355-386, 2012, DOI:10.3970/cmes.2012.087.355

    Abstract The paper presents a new meshless numerical technique for solving nonlinear Poisson-type equation 2u = f (x) + F(u,x) for x ∈ Rd, d =1,2,3. We assume that the nonlinear term can be represented as a linear combination of basis functions F(u,x) = ∑mMqmφm. We use the basis functions φm of three types: the the monomials, the trigonometric functions and the multiquadric radial basis functions. For basis functions φm of each kind there exist particular solutions of the equation 2ϕm = φm in an analytic form. This permits to write the approximate solution in the form uM = ufMore >

  • Open Access

    ARTICLE

    Dynamical Newton-Like Methods for Solving Ill-Conditioned Systems of Nonlinear Equations with Applications to Boundary Value Problems

    Cheng-Yu Ku1,2,3,Weichung Yeih1,2, Chein-Shan Liu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.2, pp. 83-108, 2011, DOI:10.3970/cmes.2011.076.083

    Abstract In this paper, a general dynamical method based on the construction of a scalar homotopy function to transform a vector function of Non-Linear Algebraic Equations (NAEs) into a time-dependent scalar function by introducing a fictitious time-like variable is proposed. With the introduction of a transformation matrix, the proposed general dynamical method can be transformed into several dynamical Newton-like methods including the Dynamical Newton Method (DNM), the Dynamical Jacobian-Inverse Free Method (DJIFM), and the Manifold-Based Exponentially Convergent Algorithm (MBECA). From the general dynamical method, we can also derive the conventional Newton method using a certain fictitious time-like function. The formulation presented… More >

  • Open Access

    ARTICLE

    Micromechanics Based Stress-Displacement Relationships of Rough Contacts: Numerical Implementation under Combined Normal and Shear Loading

    Anil Misra1, Shiping Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.2, pp. 197-216, 2009, DOI:10.3970/cmes.2009.052.197

    Abstract The behavior of contact between solid bodies with rough surfaces under combined normal and shear loading remains a problem of interest in many areas of engineering. In this paper, we have utilized a micromechanical methodology to derive an expression of stress-displacement relationship applicable to combined normal and shear loading conditions. The micromechanical methodology considers the mechanics of asperity contacts and the interface roughness in terms of asperity height and asperity contact orientation distribution. A numerical procedure is implemented to evaluate the derived expressions under complex and mixed loading conditions using an incremental approach. We find that the proposed numerical procedure… More >

  • Open Access

    ARTICLE

    Fast BEM Solvers for 3D Poisson-Type Equations

    Xuefei He1, Kian-Meng Lim1,2,3, Siak-Piang Lim1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.35, No.1, pp. 21-48, 2008, DOI:10.3970/cmes.2008.035.021

    Abstract The boundary element method (BEM) is known to have the advantage of reducing the dimension of problem by discretizing only the boundary of the domain. But it becomes less attractive for solving Poisson-type equations, due to the need to evaluate the domain integral which is computationally expensive. In this paper, we present the extension of a recently developed fast algorithm for Laplace equation, based on fast Fourier transform on multipoles (FFTM), to solve large scale 3D Poisson-type equations. We combined the Laplace solver with two fast methods for handling the domain integral based on fast Fourier transform (FFT). The first… More >

  • Open Access

    ARTICLE

    A Two-Side Equilibration Method to Reduce the Condition Number of an Ill-Posed Linear System

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.1, pp. 17-42, 2013, DOI:10.3970/cmes.2013.091.017

    Abstract In the present paper, we propose a novel two-side equilibration method to properly reduce the condition number of a given non-singular matrix only through a few operations. Then, two different conditioners together with the conjugate gradient method (CGM) are developed, which can overcome the defect of CGM, being not vulnerable to noisy disturbance exerted on an ill-posed linear system. The twoside CGM (TSCGM) and the pre-conditioning CGM (PrCGM) are convergent fast and accurate in solving linear inverse problems and the linear Hilbert problem under a large random noise. More >

  • Open Access

    ARTICLE

    A Revision of Relaxed Steepest Descent Method from the Dynamics on an Invariant Manifold

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.80, No.1, pp. 57-86, 2011, DOI:10.3970/cmes.2011.080.057

    Abstract Based-on the ordinary differential equations defined on an invariant manifold, we propose a theoretical procedure to derive a Relaxed Steepest Descent Method (RSDM) for numerically solving an ill-posed system of linear equations when the data are polluted by random noise. The invariant manifold is defined in terms of a squared-residual-norm and a fictitious time-like variable, and in the final stage we can derive an iterative algorithm including a parameter, which is known as the relaxation parameter. Through a Hopf bifurcation, this parameter indeed plays a major role to switch the situation of slow convergence to a new situation with faster… More >

  • Open Access

    ARTICLE

    Application of the Differential Transform Method for Solving Periodic Solutions of Strongly Non-linear Oscillators

    Hsin-Ping Chu1, Cheng-Ying Lo2

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.3&4, pp. 161-172, 2011, DOI:10.3970/cmes.2011.077.161

    Abstract This paper presents the application of the differential transform method to solve strongly nonlinear equations with cubic nonlinearities and self-excitation terms. First, the equations are transformed by the differential transform method into the algebra equations in terms of the transformed functions. Secondly, the higher-order transformed functions are calculated in terms of other lower-order transformed functions through the iterative procedure. Finally, the solutions are approximated by the n-th partial sum of the infinite series obtained by the inverse differential transform. Two strongly nonlinear equations with different coefficients and initial conditions are given as illustrative examples. More >

Displaying 21-30 on page 3 of 34. Per Page