Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (177)
  • Open Access

    ARTICLE

    DOUBLE-DIFFUSIVE NATURAL CONVECTION OF LOW PRANDTL NUMBER LIQUIDS WITH SORET AND DUFOUR EFFECTS

    Gang Qiua , Mo Yanga,*, Jin Wangb , Yuwen Zhangc

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.24

    Abstract An unsteady numerical model for double-diffusive natural convection of low Prandtl number liquids with Soret and Dufour effects inside the horizontal cavity is developed. The thermosolutal model is solved numerically using the SIMPLE algorithm with QUICK scheme. The flow field, temperature and concentration distributions for different buoyancy ratios, Rayleigh numbers and aspect ratios under different Prandtl numbers are studied systematically. The results reveal that the flow structure develops from conduction-dominated to convection as buoyancy ratio increases under different Prandtl numbers. Heat transfer intensity keeps constant and mass transfer intensity grows slowly before a critical point as Rayleigh number increases for… More >

  • Open Access

    ARTICLE

    PERISTALTIC FLOW OF CASSON LIQUID IN AN INCLINED POROUS TUBE WITH CONVECTIVE BOUNDARY CONDITIONS AND VARIABLE LIQUID PROPERTIES

    C. Rajashekhara , G. Manjunathaa,† , Hanumesh Vaidyab , B. B. Divyaa , K. V. Prasadc

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-8, 2018, DOI:10.5098/hmt.11.35

    Abstract The primary objective of this paper is to examine the impact of variable viscosity and thermal conductivity on peristaltic transport of Casson liquid in a convectively heated inclined porous tube. The viscosity differs over the radial axis, and temperature dependent thermal conductivity is taken into account. The perturbation technique is utilized to solve the governing nonlinear equations under the assumption of long wavelength and small Reynolds number. The analytical solutions are obtained for velocity, streamlines, pressure rise, frictional force, and temperature when subjected to slip and convective boundary conditions. The impacts of related parameters on physiological quantities of interest are… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL INVESTIGATION OF A LIQUID COOLING SYSTEM FOR A THERMOELECTRIC POWER GENERATOR SYSTEM USING ETHYLENE GLYCOL AS A NEW COOLANT

    Weera Punin*, Somchai Maneewan, Chantana Punlek

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-5, 2018, DOI:10.5098/hmt.11.22

    Abstract In the present experimental investigation, ethylene glycol cooling in a plate-fin heat sink was attached inside an aluminum cooling block for the cooling unit of a thermoelectric (TE) power generator system. The plate-fin heat sink with two different fin heights was made from aluminum with length, width and base thickness of 300, 200, and 25 mm, respectively. The ethylene glycol was used as a coolant. The effects of fin height, coolant volume flow rate, and hot side surface temperature were considered for the temperature differences between the hot side surface and cold side surface of the TE power module. The… More >

  • Open Access

    REVIEW

    A REVIEW ON COOLING OF DISCRETE HEATED MODULES USING LIQUID JET IMPINGEMENT

    Naveen G. Patil, Tapano Kumar Hotta*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-13, 2018, DOI:10.5098/hmt.11.16

    Abstract The manuscript deals with the critical review for cooling of discrete heated electronic components using liquid jet impingement. Cooling of electronic components has been a lead area of research in recent years. Due to the rapid growth of electronic industries, there is an enormous rise in the system power consumption, and the reduction in the size of electronic components has led to a rapid increase in the heat dissipation rate per unit volume of components. The present paper deals with the role of liquid jet impingement (heat flux removal rate 200 - 600 W/cm2) for cooling of electronic components. The… More >

  • Open Access

    ARTICLE

    Study on Influencing Factors of Methane Production Efficiency of Microbial Electrolytic Cell with CO2 as Carbon Source

    Qifen Li, Yuanbo Hou*, Yongwen Yang, Liting Zhang, Xiaoxiao Yan

    Journal of Renewable Materials, Vol.11, No.8, pp. 3333-3350, 2023, DOI:10.32604/jrm.2023.027464

    Abstract Reducing CO2 to produce methane through microbial electrolytic cell (MEC) is one of the important methods of CO2 resource utilization. In view of the problem of low methanogenesis rate and weak CO2 conversion rate in the reduction process, the flow field environment of the cathode chamber is changed by changing the upper gas circulation rate and the lower liquid circulation rate of the cathode chamber to explore the impact on the reactor startup and operation and products. The results showed that under certain conditions, the CO2 consumption and methane production rate could be increased by changing the upper gas recirculation… More >

  • Open Access

    ARTICLE

    Mutations in epigenetic regulator KMT2C detected by liquid biopsy are associated with worse survival in prostate cancer patients

    SHA ZHU#, NANWEI XU#, JIAYU LIANG, FENGNIAN ZHAO, ZILIN WANG, YUCHAO NI, JINDONG DAI, JINGE ZHAO, XINGMING ZHANG, JUNRU CHEN, GUANGXI SUN, PENGFEI SHEN*, HAO ZENG*

    Oncology Research, Vol.31, No.4, pp. 605-614, 2023, DOI:10.32604/or.2023.028321

    Abstract Background: KMT2 (lysine methyltransferase) family enzymes are epigenetic regulators that activate gene transcription. KMT2C is mainly involved in enhancer-associated H3K4me1, and is also one of the top mutated genes in cancer (6.6% in pan-cancer). Currently, the clinical significance of KMT2C mutations in prostate cancer is understudied. Methods: We included 221 prostate cancer patients diagnosed between 2014 and 2021 in West China Hospital of Sichuan University with cell-free DNA-based liquid biopsy test results in this study. We investigated the association between KMT2C mutations, other mutations, and pathways. Furthermore, we evaluated the prognostic value of KMT2C mutations, measured by overall survival (OS)… More >

  • Open Access

    ARTICLE

    Influence of Spray Gun Position and Orientation on Liquid Film Development along a Cylindrical Surface

    Jiuxuan Liu, Yong Zeng*, Xueya Zhao, Hongbo Chen, Bin Yan, Qian Lu

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2499-2518, 2023, DOI:10.32604/fdmp.2023.028413

    Abstract

    A method combining computational fluid dynamics (CFD) and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquid film along the surface of a cylindrical workpiece. The numerical method relies on an Eulerian-Eulerian technique. Different cylinder diameters and positions and inclinations of the spray gun are considered and useful correlations for the thickness of the liquid film and its distribution are determined using various data fitting algorithms. Finally, the reliability of the proposed method is verified by means of experimental tests where the robot posture is changed. The provided correlation are intended… More > Graphic Abstract

    Influence of Spray Gun Position and Orientation on Liquid Film Development along a Cylindrical Surface

  • Open Access

    ARTICLE

    IMPACT OF VARIABLE LIQUID PROPERTIES ON PERISTALTIC MECHANISM OF CONVECTIVELY HEATED JEFFREY FLUID IN A SLIPPERY ELASTIC TUBE

    B.B. Divyaa , G. Manjunathaa,† , C. Rajashekhara, Hanumesh Vaidyab, K.V. Prasadc

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-9, 2019, DOI:10.5098/hmt.12.15

    Abstract The present paper examines the peristaltic mechanism of a Jeffrey fluid through an elastic tube. The influence of velocity slip, convective boundary conditions, and variable liquid properties are taken into account. Closed form solutions are obtained for velocity, flux and temperature fields. In order to linearize the temperature equation, perturbation technique is employed. Also, the flux is determined theoretically via Rubinow and Keller and Mazumdar approach and the results are compared graphically. The effects of various vital parameters on the fluid flow are sketched and analyzed graphically. The findings emphasize the importance of elastic parameters in enhancing the flux of… More >

  • Open Access

    ARTICLE

    PERFORMANCE OF NANOPOROUS FILTRATION MEMBRANE WITH CONICAL PORES: FOR A LIQUID-PARTICLE SEPARATION

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-6, 2019, DOI:10.5098/hmt.12.14

    Abstract An analysis was developed for the flow resistance of the nanoporous filtration membrane with conical pores for a liquid-particle separation, based on the nanoscale flow model. The calculation results show that there exists the optimum cone angle of the conical pore which gives the lowest flow resistance and thus the highest flux of the membrane; This optimum cone angle of the conical pore depends on the radius of the small opening of the conical pore, the passing liquid-pore wall interaction and the membrane thickness. The equations were regressed out for calculating this optimum cone angle respectively for weak, medium and… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER IN A PARALLELOGRAMIC ENCLOSURE HAVING AN INNER CIRCULAR CYLINDER USING LIQUID NANOFLUID

    Hasan Sh. Majdia , Ammar Abdulkadhimb,* , Azher M. Abedb

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-14, 2019, DOI:10.5098/hmt.12.2

    Abstract Fluid flow and natural convection heat transfer in a parallelogram enclosure with an inner circular cylinder using Cu-water nanofluid are studied numerically. Dimensionless Navier-Stokes and energy equations are solved numerically using finite element method based two-dimensional flow and steady-state conditions. This study evaluates the effect of different concentrations of Cu-water nanofluids (0% to 6%) with different Rayleigh numbers 103 ≤ Ra ≤ 106 under isotherm wall temperatures. The effects of geometrical parameters of the parallelogram enclosure (inclination angle in range of 0 ≤ α ≤ 30 and location of inner circular cylinder -0.2 ≤ H ≤ +0.2 on the flow… More >

Displaying 31-40 on page 4 of 177. Per Page