Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,666)
  • Open Access

    PROCEEDINGS

    Deep-Potential Enabled Multiscale Simulation of Interfacial Thermal Transport in Boron Arsenide Heterostructures

    Jing Wu1, E Zhou1, An Huang1, Hongbin Zhang2, Ming Hu3, Guangzhao Qin1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012552

    Abstract High thermal conductivity substrate plays a significant role for efficient heat dissipation of electronic devices, and it is urgent to optimize the interfacial thermal resistance. As a novel material with ultra-high thermal conductivity second only to diamond, boron arsenide (BAs) shows promising applications in electronics cooling [1,2]. By adopting multi-scale simulation method driven by machine learning potential, we systematically study the thermal transport properties of boron arsenide, and further investigate the interfacial thermal transport in the GaN-BAs heterostructures. Ultrahigh interfacial thermal conductance of 260 MW m-2K-1 is achieved, which agrees well with experimental measurements, and the More >

  • Open Access

    REVIEW

    Enhancing Cyber Security through Artificial Intelligence and Machine Learning: A Literature Review

    Carlos Merlano*

    Journal of Cyber Security, Vol.6, pp. 89-116, 2024, DOI:10.32604/jcs.2024.056164 - 06 December 2024

    Abstract The constantly increasing degree and frequency of cyber threats require the emergence of flexible and intelligent approaches to systems’ protection. Despite the calls for the use of artificial intelligence (AI) and machine learning (ML) in strengthening cyber security, there needs to be more literature on an integrated view of the application areas, open issues or trends in AI and ML for cyber security. Based on 90 studies, in the following literature review, the author categorizes and systematically analyzes the current research field to fill this gap. The review evidences that, in contrast to rigid rule-based… More >

  • Open Access

    ARTICLE

    Securing Web by Predicting Malicious URLs

    Imran Khan, Meenakshi Megavarnam*

    Journal of Cyber Security, Vol.6, pp. 117-130, 2024, DOI:10.32604/jcs.2024.048332 - 06 December 2024

    Abstract A URL (Uniform Resource Locator) is used to locate a digital resource. With this URL, an attacker can perform a variety of attacks, which can lead to serious consequences for both individuals and organizations. Therefore, attackers create malicious URLs to gain access to an organization’s systems or sensitive information. It is crucial to secure individuals and organizations against these malicious URLs. A combination of machine learning and deep learning was used to predict malicious URLs. This research contributes significantly to the field of cybersecurity by proposing a model that seamlessly integrates the accuracy of machine More >

  • Open Access

    PROCEEDINGS

    Effects of Spin Excitation on the Dislocation Dynamics in Body-Centered Cubic Iron

    Hideki Mori1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012935

    Abstract To design the mechanical strength of iron, it is very important to clarify the detail of dislocation dynamics in Body-Centered Cubic (BCC) Iron. The dislocation core structures are typically confined to the nanometer scale.
    This implies that the resistance force from discrete atomic columns has a direct bearing on dislocation mobility.
    Recently, we've developed a high-fidelity inter-atomic potential leveraging neural networks built upon density functional theory (DFT) data. By conducting dislocation dynamics simulations, we've addressed shortcomings inherent in classical inter-atomic potential approaches. Nonetheless, a significant challenge persists: a three- to four-fold deviation exists between More >

  • Open Access

    PROCEEDINGS

    Inductive and Deductive Scale-Bridging In Hierarchical Multiscale Models for Dislocation Pattern Formation in Metal Fatigue

    Yoshitaka Umeno1,*, Atsushi Kubo2, Emi Kawai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.012708

    Abstract Fatigue fracture accounts for a substantial fraction of failure cases in industrial products, especially in metal materials. While the mechanism of fatigue crack propagation can be understood in the mechanical point of view considering the effect of microstructures and crystal orientations on crack growth, there is still much room for investigations of the mechanism of fatigue crack formation under cyclic loading. It is widely understood that the fatigue crack formation in macroscopic metal materials originates in the persistent slip band (PSB) formed as a result of self-organization of dislocation structures [1]. Nevertheless, the PSB formation… More >

  • Open Access

    PROCEEDINGS

    Accurate Atomistic Study on Hydrogen Solubility in α-Iron at High H2 Pressures

    Shihao Zhu1, Fanshun Meng1, Shihao Zhang1, Shigenobu Ogata1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012058

    Abstract Hydrogen dissolves in most metallic materials and causes hydrogen embrittlement (HE). This is particularly relevant to iron, a widely used material in engineering applications, which can degrade when exposed to high-pressure hydrogen gas under high temperature. As the hydrogen concentration is a primary factor controls defects properties in metals [1], it is crucial to understand the hydrogen solubility under high H2 pressure, but this aspect remains unclear. At low H2 pressures, the solubility of hydrogen can be predicted using Sieverts’ law [2], which states that the solubility increases proportionally to the square root of H2… More >

  • Open Access

    PROCEEDINGS

    Numerical Investigation on the Ductile Machining of Calcium Fluoride Single Crystal Enhanced by Laser Assistance

    Jiaming Zhan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011189

    Abstract Calcium fluoride (CaF2) exhibits excellent optical properties, making it a promising candidate for preparing optical components. The actual applications underscore the importance of enhancing the ductile machining of such a difficult-to-machine material. This study starts by investigating the influence of thermal gradient fields on the mechanical behaviors of CaF2 single crystal experimentally and theoretically, revealing the potential deformation mechanisms under various thermal additions. On this basis, a novel laser-assisted machining (LAM) scheme was proposed to enhance the deformability and machinability of CaF2 single crystal by tailoring local thermal fields. The laser heating spot within the work material… More >

  • Open Access

    ARTICLE

    Phytochemical and Pharmacological Study on the Dry Extract of Matricaria discoidea DC. herb and Its Amino Acids Preparations

    Oleh Koshovyi1,2,*, Janne Sepp1, Valdas Jakštas3, Vaidotas Žvikas3, Karina Tolmacheva4, Igor Kireyev4, Jyrki Heinämäki1, Ain Raal1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2909-2925, 2024, DOI:10.32604/phyton.2024.056536 - 30 November 2024

    Abstract Pineappleweed (Matricaria discoidea DC., Asteraceae) herb is an essential oil containing raw material with spasmolytic and anti-inflammatory activity. It is also rich in phenolics, which may be used in pharmaceutical practice. This study aimed to investigate the phenolic and amino acid composition and the hyporific and analgesic effects of the M. discoidea aqueous-ethanolic extract and its amino acid modifications. In addition, we developed a polyethylene oxide gel formulation with M. discoidea extracts for the 3D-printed oral solid dosage preparations. In M. discoidea extracts, 16 phenolic substances and 14 amino acids were established. The extract and its amino acid preparations More >

  • Open Access

    PROCEEDINGS

    Sequential Activation of M1and M2 Phenotype in Macrophages by Mg Degradation from Ti-Mg Alloy for Enhanced Osteogenesis

    Luxin Liang1, Bing Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012682

    Abstract Background: Even though the modulatory effects of Mg and its alloys on bone healing cells during the last two decades, relatively limited attention has been paid on their inflammation-modulatory properties. Understanding the activation process of macrophages in response to the dynamic degradation process of Mg as well as the relationship between macrophage phenotypes and their osteogenic potential is critical for the design and development of advanced Mg-based or Mg-incorporated biomaterials.
    Methods: In this work, Ti-0.625Mg (wt.%) alloy fabricated by mechanical alloying (MA) and subsequent spark plasma sintering (SPS) was employed as a material model to explore the inflammatory response… More >

  • Open Access

    PROCEEDINGS

    Machining Learning Enhanced Shape Morphing Design of 4D Printed Microplatelet Composites

    Weixiang Peng1, Hortense Le Ferrand1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011119

    Abstract Natural structural materials have undergone extensive evolution, resulting in intricate microstructural designs over billions of years. These designs have given rise to a diverse array of hierarchical microstructures that exhibit exceptional performance in terms of strength, resilience, toughness, and adaptability [1]. Among these natural microstructures, the microplatelet-based brick-and-mortar arrangement found in the nacreous layers of seashells has been the subject of extensive study. Additionally, more complex microstructural alignments exist, and these mineral orientations showcase varying properties, such as the shrinkage deformations. Inspired by the observed expansion deformation characteristics in nature, this study delves into the… More >

Displaying 1-10 on page 1 of 1666. Per Page