Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    Soy Protein Isolate Non-Isocyanates Polyurethanes (NIPU) Wood Adhesives

    Xinyi Chen1,2, Antonio Pizzi1,*, Xuedong Xi1,2, Xiaojian Zhou2, Emmanuel Fredon1, Christine Gerardin3

    Journal of Renewable Materials, Vol.9, No.6, pp. 1045-1057, 2021, DOI:10.32604/jrm.2021.015066

    Abstract Soy-protein isolate (SPI) was used to prepare non-isocyanate polyurethane (NIPU) thermosetting adhesives for wood panels by reacting it with dimethyl carbonate (DMC) and hexamethylene diamine. Both linear as well as branched oligomers were obtained and identified, indicating how such oligomer structures could further cross-link to form a hardened network. Unusual structures were observed, namely carbamic acid-derived urethane linkages coupled with lactam structures. The curing of the adhesive was followed by thermomechanical analysis (TMA). It appeared to follow a two stages process: First, at a lower temperature (maximum 130°C), the growth of linear oligomers occurred, finally forming a physically entangled network.… More >

  • Open Access

    ARTICLE

    Organosolv Lignin for Non-Isocyanate Based Polyurethanes (NIPU) as Wood Adhesive

    Jaša Saražin1, Antonio Pizzi2, Siham Amirou2, Detlef Schmiedl3, Milan Šernek1,*

    Journal of Renewable Materials, Vol.9, No.5, pp. 881-907, 2021, DOI:10.32604/jrm.2021.015047

    Abstract A non-isocyanate-based polyurethane (NIPU) wood adhesive was produced from organosolv lignin, which is a bio-sourced raw material, available in large quantities and produced as a by-product of the paper industry. The formulation of this new lignin-based NIPU adhesive, which is presented, was chemically characterised by Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI ToF) mass spectrometry and by Fourier Transform Infra-Red (FTIR) spectrometry analyses. The oligomers formed were determined and showed that the three species involved in the NIPU adhesive preparation were formed by the co-reaction of the three reagents used: lignin, dimethyl carbonate, and hexamethylene diamine. Linear and branched… More >

  • Open Access

    ARTICLE

    Differentiation of Fungal Destructive Behaviour of Wood by the White-Rot Fungus Fomes fomentarius by MALDI-TOF Mass Spectrometry

    Ehsan Bari1,*, Antonio Pizzi2,*, Olaf Schmidt3, Siham Amirou2, Mohammad Ali Tajick-Ghanbary4, Miha Humar5

    Journal of Renewable Materials, Vol.9, No.3, pp. 381-397, 2021, DOI:10.32604/jrm.2021.015288

    Abstract There are many methods to identify and recognize the molecular and behavioural differences between organisms. One of the methods for the detection and identification of unknown organisms as well as intermolecular and intramolecular structural differences is MALDI-TOF mass spectrometry. Therefore, differentiation of Fomes fomentarius decay capabilities on the chemical properties of the wood cell wall of the tree species Quercus castaneifolia, Juglans regia, and Carpinus betulus were used to determine and characterize the destructive behaviour of F. fomentarius decay by MALDI-TOF mass spectrometry. The results showed that the fungus had more signifi- cant destructive behaviour on J. regia than the… More >

  • Open Access

    ARTICLE

    No-Aldehydes Glucose/Sucrose-Triacetin-Diamine Wood Adhesives for Particleboard

    Xuedong Xi, Antonio Pizzi*

    Journal of Renewable Materials, Vol.8, No.7, pp. 715-725, 2020, DOI:10.32604/jrm.2020.010882

    Abstract A three reagents adhesive system for wood particleboards not containing any aldehyde was developed by the reaction of glucose or sucrose with triacetin (glycerin triacetate) and with hexamethylene diamine. The system was found to be based on the mix of three reactions, namely the reaction of (i) glucose with triacetin, (ii) of the diamine with triacetin, and (iii) of glucose with the diamine. The chemical species formed were identified by Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-ToF) mass spectrometry. Wood particleboard panels were prepared with this adhesive system and gave good internal bond (IB) strength results suitable for… More >

  • Open Access

    ARTICLE

    Hydroxymethylfurfural Hardening of Pine Tannin Wood Adhesives

    F.-J. Santiago-Medina1, A. Pizzi1,2,*, S. Abdalla2

    Journal of Renewable Materials, Vol.5, No.5, pp. 435-447, 2017, DOI:10.7569/JRM.2017.634166

    Abstract An adhesive based on the reaction of a very fast reacting procyanidin-type condensed tannin, namely purified pine bark tannin, with a biosourced nontoxic and nonvolatile aldehyde derived from the pulp and paper industry, namely hydroxymethylfurfural (HMF), was shown to almost satisfy the relevant standards for bonding wood particleboard. The conditions of pH used are determinant for the result. The oligomers obtained by the reaction and their distribution have been determined by matrix-assisted laser ionization desorption time-of-flight (MALDI-TOF) mass spectrometry. Of the two reactive groups of hydroxymethylfurfural capable of reacting, the furanic aldehyde one and the furanic hydroxymethyl alcohol group, only… More >

  • Open Access

    ARTICLE

    Polyurethanes from Kraft Lignin without Using Isocyanates

    F.J. Santiago-Medina1, M.C. Basso1, A. Pizzi1,2,*, L. Delmotte3

    Journal of Renewable Materials, Vol.6, No.4, pp. 413-425, 2018, DOI:10.7569/JRM.2017.634172

    Abstract The reaction of a desulphurized kraft lignin with hexamethylene diamine and dimethyl carbonate has allowed the development of isocyanate-free polyurethane resins. The present research work is based on previous studies made with hydrolyzable and condensed tannins, but takes advantage of the higher number of hydroxyl groups present in lignin and their different aliphatic and aromatic character. The obtained materials were analyzed by Fourier transform infrared (FTIR) spectroscopy, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and solid-state cross-polarization/magic angle spinning (CP MAS) 13 C nuclear magnetic resonance (NMR), which have revealed the presence of urethane functions. The interpretation of the… More >

  • Open Access

    ARTICLE

    Polycondensation Resins by Lignin Reaction with (Poly) amines

    F. J. Santiago-Medina1, A. Pizzi1, 2*, M. C. Basso1, L. Delmotte3, S. Abdalla2

    Journal of Renewable Materials, Vol.5, No.5, pp. 388-399, 2017, DOI:10.7569/JRM.2017.634142

    Abstract The reaction of a desulphurized kraft lignin with hexamethylene diamine as a model of a polyamine has been investigated. For this purpose, guaiacol was also used as a lignin model compound and treated under similar conditions. Solid state CP-MAS 13C NMR, FTIR and MALDI-TOF spectroscopy studies revealed that polycondensation compounds leading to resins were obtained by the reaction of the amines with the phenolic and aliphatic hydroxy groups of lignin. Simultaneously a second reaction leading to the formation of ionic bonds between the same groups occurred. These new reactions have been clearly shown to involve several phenolic and alcohol hydroxyl… More >

  • Open Access

    ARTICLE

    Isocyanate-Free Polyurethanes by Coreaction of Condensed Tannins with Aminated Tannins

    M. Thébault1,2, A. Pizzi13*, F.J. Santiago-Medina1, F.M. Al-Marzouki3, S. Abdalla3

    Journal of Renewable Materials, Vol.5, No.1, pp. 21-29, 2017, DOI:10.7569/JRM.2016.634116

    Abstract Isocyanate-free polyurethane resins biosourced to a very high percentage level were prepared by the reaction of aminated mimosa tannin extract with commercial mimosa tannin extract prereacted with dimethyl carbonate. The reaction took place with ease at ambient temperature. Indications were that the polyurethanes obtained formed a hard film when cured at a temperature higher than 100 °C. Furthermore, the carbohydrate fraction of the tannin extract also appeared to be carbonated and reacted to generate isocyanate-free polyurethane linkages with the aminated tannins. This indicated that not only the polyphenolic fraction of the tannin extract, but also its other major component, can… More >

Displaying 11-20 on page 2 of 18. Per Page