Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (178)
  • Open Access

    ARTICLE

    Data-Driven Prediction and Optimization of Mechanical Properties and Vibration Damping in Cast Iron–Granite-Epoxy Hybrid Composites

    Girish Hariharan1, Vinyas1, Gowrishankar Mandya Chennegowda1, Nitesh Kumar1, Shiva Kumar1, Deepak Doreswamy2, Subraya Krishna Bhat1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073772 - 12 January 2026

    Abstract This study presents a framework involving statistical modeling and machine learning to accurately predict and optimize the mechanical and damping properties of hybrid granite–epoxy (G–E) composites reinforced with cast iron (CI) filler particles. Hybrid G–E composite with added cast iron (CI) filler particles enhances stiffness, strength, and vibration damping, offering enhanced performance for vibration-sensitive engineering applications. Unlike conventional approaches, this work simultaneously employs Artificial Neural Networks (ANN) for high-accuracy property prediction and Response Surface Methodology (RSM) for in-depth analysis of factor interactions and optimization. A total of 24 experimental test data sets of varying input… More >

  • Open Access

    ARTICLE

    A Novel Quantitative Detection of Sleeve Grouting Compactness Based on Ultrasonic Time-Frequency Dual-Domain Analysis

    Longqi Liao1, Jing Li2, Yuhua Li3, Yuemin Wang3, Jinhua Li1,*, Liyuan Cao4,*, Chunxiang Li4,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.072237 - 08 January 2026

    Abstract Quantitative detection of sleeve grouting compactness is a technical challenge in civil engineering testing. This study explores a novel quantitative detection method based on ultrasonic time-frequency dual-domain analysis. It establishes a mapping relationship between sleeve grouting compactness and characteristic parameters. First, this study made samples with gradient defects for two types of grouting sleeves, G18 and G20. These included four cases: 2D, 4D, 6D defects (where D is the diameter of the grouting sleeve), and no-defect. Then, an ultrasonic input/output data acquisition system was established. Three-dimensional sound field distribution data were obtained through an orthogonal… More >

  • Open Access

    ARTICLE

    Suppression of Dry-Coupled Rubber Layer Interference in Ultrasonic Thickness Measurement: A Comparative Study of Empirical Mode Decomposition Variants

    Weichen Wang1, Shaofeng Wang1, Wenjing Liu1,*, Luncai Zhou2, Erqing Zhang1, Ting Gao3, Grigory Petrishin4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071278 - 08 January 2026

    Abstract In dry-coupled ultrasonic thickness measurement, thick rubber layers introduce high-amplitude parasitic echoes that obscure defect signals and degrade thickness accuracy. Existing methods struggle to resolve overlap-ping echoes under variable coupling conditions and non-stationary noise. This study proposes a novel dual-criterion framework integrating energy contribution and statistical impulsivity metrics to isolate specimen re-flections from coupling-layer interference. By decomposing A-scan signals into Intrinsic Mode Functions (IMFs), the framework employs energy contribution thresholds (>85%) and kurtosis indices (>3) to autonomously select IMFs containing valid specimen echoes. Hybrid time-frequency thresholding further suppresses interference through amplitude filtering and spectral focusing. More >

  • Open Access

    ARTICLE

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

    Jin Lin1,*, Bin Yu2, Chao Chen1, Jiezhen Cai1, Yifan Wu2, Cunping Wang3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069310 - 27 December 2025

    Abstract With the increasing integration of renewable energy, microgrids are increasingly facing stability challenges, primarily due to the lack of inherent inertia in inverter-dominated systems, which is traditionally provided by synchronous generators. To address this critical issue, Virtual Synchronous Generator (VSG) technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators. To enhance the operational efficiency of virtual synchronous generators (VSGs), this study employs small-signal modeling analysis, root locus methods, and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency… More > Graphic Abstract

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

  • Open Access

    ARTICLE

    Beyond Accuracy: Evaluating and Explaining the Capability Boundaries of Large Language Models in Syntax-Preserving Code Translation

    Yaxin Zhao1, Qi Han2, Hui Shu2, Yan Guang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.070511 - 09 December 2025

    Abstract Large Language Models (LLMs) are increasingly applied in the field of code translation. However, existing evaluation methodologies suffer from two major limitations: (1) the high overlap between test data and pretraining corpora, which introduces significant bias in performance evaluation; and (2) mainstream metrics focus primarily on surface-level accuracy, failing to uncover the underlying factors that constrain model capabilities. To address these issues, this paper presents TCode (Translation-Oriented Code Evaluation benchmark)—a complexity-controllable, contamination-free benchmark dataset for code translation—alongside a dedicated static feature sensitivity evaluation framework. The dataset is carefully designed to control complexity along multiple dimensions—including syntactic… More >

  • Open Access

    ARTICLE

    Enhancing Well-Being through Psychological Resilience and Social Capital: An Empirical Study of Female Entrepreneurs in the Long-Term Care Industry

    Chia-Hui Hou*

    International Journal of Mental Health Promotion, Vol.27, No.12, pp. 2007-2022, 2025, DOI:10.32604/ijmhp.2025.073748 - 31 December 2025

    Abstract Objectives: With the rapid aging of populations worldwide, the long-term care (LTC) industry has become a critical arena for both social welfare and entrepreneurial development, particularly among women who play a leading role in caregiving enterprises. However, female LTC entrepreneurs often face emotional strain and limited social resources that affect their professional well-being. This study investigates the effects of psychological resilience and social capital on the well-being of female entrepreneurs in the long-term care (LTC) industry and examines the mediating role of entrepreneurial competence. Methods: A mixed-methods design was employed. Quantitative data were collected from 73… More >

  • Open Access

    ARTICLE

    Cavitation Effects and Flow Field Analysis of a Jet Impingement-Negative Pressure Ammonia Removal Reactor

    Dong Hu1,2, Lingxing Hu3, Facheng Qiu3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1865-1882, 2025, DOI:10.32604/fhmt.2025.073409 - 31 December 2025

    Abstract With the acceleration of industrialization and urbanization, ammonia nitrogen pollution in water bodies has become increasingly severe, making the development of efficient and low-consumption wastewater treatment technologies highly significant. This study employs three-dimensional computational fluid dynamics (CFD) to investigate the cavitation mechanisms and flow field characteristics in a novel jet impingement-negative pressure ammonia removal reactor. The simulation, validated by experimental pressure data with a high degree of consistency, utilizes the Mixture model, the Realizable k-ε turbulence model, and the Schnerr-Sauer cavitation model. The results demonstrate that the flow velocity undergoes a substantial acceleration within the… More > Graphic Abstract

    Cavitation Effects and Flow Field Analysis of a Jet Impingement-Negative Pressure Ammonia Removal Reactor

  • Open Access

    ARTICLE

    LLM-Based Enhanced Clustering for Low-Resource Language: An Empirical Study

    Talha Farooq Khan1, Majid Hussain1, Muhammad Arslan2, Muhammad Saeed1, Lal Khan3,*, Hsien-Tsung Chang4,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3883-3911, 2025, DOI:10.32604/cmes.2025.073021 - 23 December 2025

    Abstract Text clustering is an important task because of its vital role in NLP-related tasks. However, existing research on clustering is mainly based on the English language, with limited work on low-resource languages, such as Urdu. Low-resource language text clustering has many drawbacks in the form of limited annotated collections and strong linguistic diversity. The primary aim of this paper is twofold: (1) By introducing a clustering dataset named UNC-2025 comprises 100k Urdu news documents, and (2) a detailed empirical standard of Large Language Model (LLM) improved clustering methods for Urdu text. We explicitly evaluate the… More >

  • Open Access

    ARTICLE

    Enhancement of Frequency Regulation in AC-Excited Adjustable-Speed Pumped Storage Units during Pumping Operations

    Shuxin Tan1, Wei Yan2, Lei Zhao1, Xianglin Zhang3,*, Ziqiang Man2, Yu Lu2, Teng Liu2, Gaoyue Zhong2, Weiqun Liu2, Linjun Shi3

    Energy Engineering, Vol.122, No.12, pp. 5175-5197, 2025, DOI:10.32604/ee.2025.068692 - 27 November 2025

    Abstract The integration of large-scale renewable energy introduces frequency instability challenges due to inherent intermittency. While doubly-fed pumped storage units (DFPSUs) offer frequency regulation potential in pumping mode, conventional strategies fail to address hydraulic-mechanical coupling dynamics and operational constraints, limiting their effectiveness. This paper presents an innovative primary frequency control strategy for double-fed pumped storage units (DFPSUs) operating in pumping mode, integrating an adaptive parameter calculation method. This method is constrained by operational speed and power limits, addressing key performance factors. A dynamic model that incorporates the reversible pump-turbine characteristics is developed to translate frequency deviations… More >

  • Open Access

    PROCEEDINGS

    Vibration Reduction Design of Two-Dimensional Periodical Triangular Concave Structure

    Yibin Mao1, Dianlong Yu2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.012290

    Abstract In modern engineering, situations that require vibration reduction often come with specific pressure requirements. Mechanical metamaterials have the advantages in mechanical loading and low-frequency band gap vibration reduction. To ensure that the structure has a wide and low-frequency band gap while having a pressure resistance, a two-dimensional triangular concave negative Poisson's ratio structure with strong pressure resistance is introduced. The internal structure is designed according to the principle of local resonance. The band structure and intrinsic modes of the two-dimensional triangular concave model are calculated by the finite element method through simulation software. The band… More >

Displaying 1-10 on page 1 of 178. Per Page