Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (162)
  • Open Access

    ARTICLE

    Research on Optimization of Hierarchical Quantum Circuit Scheduling Strategy

    Ziao Han, Hui Li*, Kai Lu, Shujuan Liu, Mingmei Ju

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5097-5113, 2025, DOI:10.32604/cmc.2025.059577 - 06 March 2025

    Abstract Traditional quantum circuit scheduling approaches underutilize the inherent parallelism of quantum computation in the Noisy Intermediate-Scale Quantum (NISQ) era, overlook the inter-layer operations can be further parallelized. Based on this, two quantum circuit scheduling optimization approaches are designed and integrated into the quantum circuit compilation process. Firstly, we introduce the Layered Topology Scheduling Approach (LTSA), which employs a greedy algorithm and leverages the principles of topological sorting in graph theory. LTSA allocates quantum gates to a layered structure, maximizing the concurrent execution of quantum gate operations. Secondly, the Layerwise Conflict Resolution Approach (LCRA) is proposed.… More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization of Swirling Impinging Air Jets with Genetic Algorithm and Weighted Sum Method

    Sudipta Debnath1, Zahir Uddin Ahmed2, Muhammad Ikhlaq3,4,*, Md. Tanvir Khan5, Avneet Kaur6, Kuljeet Singh Grewal1

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 71-94, 2025, DOI:10.32604/fhmt.2024.059734 - 26 February 2025

    Abstract Impinging jet arrays are extensively used in numerous industrial operations, including the cooling of electronics, turbine blades, and other high-heat flux systems because of their superior heat transfer capabilities. Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution, which can lead to improved system performance and energy savings. This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system. The governing equations are resolved employing the commercial computational fluid dynamics (CFD) software ANSYS Fluent v17. The study focuses on four… More > Graphic Abstract

    Multi-Objective Optimization of Swirling Impinging Air Jets with Genetic Algorithm and Weighted Sum Method

  • Open Access

    ARTICLE

    Design and Economic Evaluation of Grid-Connected PV Water Pumping Systems for Various Head Locations

    Moien A. Omar*

    Energy Engineering, Vol.122, No.2, pp. 561-576, 2025, DOI:10.32604/ee.2025.059352 - 31 January 2025

    Abstract This research investigates the design and optimization of a photovoltaic (PV) water pumping system to address seasonal water demands across five locations with varying elevation heads. The system draws water from a deep well with a static water level of 30 m and a dynamic level of 50 m, serving agricultural and livestock needs. The objective of this study is to accurately size a PV system that balances energy generation and demand while minimizing grid dependency. Meanwhile, the study presents a comprehensive methodology to calculate flow rates, pumping power, daily energy consumption, and system capacity.… More >

  • Open Access

    ARTICLE

    Multi-Scale Dilated Convolution Network for SPECT-MPI Cardiovascular Disease Classification with Adaptive Denoising and Attenuation Correction

    A. Robert Singh1, Suganya Athisayamani2, Gyanendra Prasad Joshi3, Bhanu Shrestha4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 299-327, 2025, DOI:10.32604/cmes.2024.055599 - 17 December 2024

    Abstract Myocardial perfusion imaging (MPI), which uses single-photon emission computed tomography (SPECT), is a well-known estimating tool for medical diagnosis, employing the classification of images to show situations in coronary artery disease (CAD). The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks (CNNs). This paper uses a SPECT classification framework with three steps: 1) Image denoising, 2) Attenuation correction, and 3) Image classification. Image denoising is done by a U-Net architecture that ensures effective image denoising. Attenuation correction is implemented by a convolution neural network model that… More >

  • Open Access

    ARTICLE

    Impact Behaviour of Hybrid Jute/Epoxy Composites at Different Temperature Conditions

    Somasundaram Karthiyaini1, Mohan Sasikumar2,*, Abraham Jebamalar3, P. A. Prasob2

    Journal of Polymer Materials, Vol.41, No.4, pp. 219-237, 2024, DOI:10.32604/jpm.2024.053829 - 16 December 2024

    Abstract This manuscript presents the projectile impact behavior of hybrid jute/epoxy composite laminates using an instrumented air gun impact setup with the projectile moving in the vertical direction. An approach based on the stiffness change is used to predict the projectile impact response of hybrid jute epoxy-filled laminates impacted with a stainless-steel projectile. The experimental validation of the parameters like dynamic hardness (Hd) coefficient of restitution (COR), natural frequency, damping factor, and loss factor was used to analyze the impact behavior of jute/epoxy composites strengthened with fillers ZrO2, ZnO, and TiO2. The free vibration tests of the More >

  • Open Access

    ARTICLE

    Uniting the Role of Entomopathogenic Fungi against Rhizoctonia solani JG Kühn, the Causal Agent of Cucumber Damping-Off and Root Rot Diseases

    Abdelhak Rhouma1, Lobna Hajji-Hedfi1,*, Nahla Alsayd Bouqellah2,*, Pravin Babasaheb Khaire3, Samar Dali1, Omaima Bargougui1, Amira Khlif1, Laith Khalil Tawfeeq Al-Ani4

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2857-2881, 2024, DOI:10.32604/phyton.2024.057591 - 30 November 2024

    Abstract Beauveria bassiana and Metarhizium spp. are entomopathogenic fungi with potential applications beyond insect pest control, including plant disease suppression, plant growth promotion, and rhizosphere colonization. This study investigated the plant growth-promoting characteristics and extracellular enzyme activities of Metarhizium spp. and B. bassiana in relation to phytopathogen interactions and plant growth. Additionally, the efficacy of these fungi in mitigating damping-off and root rot caused by Rhizoctonia solani on cucumber plants was evaluated in vitro and in vivo. Results indicate that B. bassiana and M. anisopliae produce indole-3-acetic acid, hydrocyanic acid, and hydrolytic enzymes. Seed treatment with these fungi significantly reduced disease severity (3.85%–1.86%, respectively)… More >

  • Open Access

    ARTICLE

    Encapsulation of Clove Oil Nanoemlusion in Chitosan-Based Nano-Composite: In Vitro and in Vivo Antifungal Activity against Rhizoctonia solani and Sclerotium rolfsii

    Ahmed Mahmoud Ismail1,2,3,*, Eman Said Elshewy3, Isra H. Ali4,5, Naglaa Abd Elbaki Sallam Muhanna3, Eman Yehia Khafagi3

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2787-2811, 2024, DOI:10.32604/phyton.2024.057518 - 30 November 2024

    Abstract Rhizoctonia solani Kühn and Sclerotium rolfsii Sacc. are the primary soil-borne plant diseases responsible for significant reductions in global crop yields. The primary goal of this study was to investigate the antifungal potentials of clove essential oil (CEO), nanoemulsion form (CEONE) and chitosan/nanoemulsion nanocomposite (CS/CEONE) against R. solani and S. rolfsii through in vitro and in vivo trials. Both CEONE and CS/CEONE were prepared and investigated for their physical chemical and morphological characterization. The poisoned medium method was utilized to evaluate the inhibitory effects of CEO, CEONE and CS/CEONE on the mycelial growth and enzymatic activity of R. solani and S. rolfsii. The… More >

  • Open Access

    ARTICLE

    Improved Strategy of Grid-Forming Virtual Synchronous Generator Based on Transient Damping

    Lei Zhang1, Rongliang Shi1,2,*, Junhui Li2, Yannan Yu1, Yu Zhang1

    Energy Engineering, Vol.121, No.11, pp. 3181-3197, 2024, DOI:10.32604/ee.2024.054485 - 21 October 2024

    Abstract The grid-forming virtual synchronous generator (GFVSG) not only employs a first-order low-pass filter for virtual inertia control but also introduces grid-connected active power (GCAP) dynamic oscillation issues, akin to those observed in traditional synchronous generators. In response to this, an improved strategy for lead-lag filter based GFVSG (LLF-GFVSG) is presented in this article. Firstly, the grid-connected circuit structure and control principle of typical GFVSG are described, and a closed-loop small-signal model for GCAP in GFVSG is established. The causes of GCAP dynamic oscillation of GFVSG under the disturbances of active power command as well as More >

  • Open Access

    ARTICLE

    Towards Improving the Quality of Requirement and Testing Process in Agile Software Development: An Empirical Study

    Irum Ilays1, Yaser Hafeez1,*, Nabil Almashfi2, Sadia Ali1, Mamoona Humayun3,*, Muhammad Aqib1, Ghadah Alwakid4

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3761-3784, 2024, DOI:10.32604/cmc.2024.053830 - 12 September 2024

    Abstract Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification, which affect the testing process. Therefore, it is difficult to identify all faults in software. As requirement changes continuously, it increases the irrelevancy and redundancy during testing. Due to these challenges; fault detection capability decreases and there arises a need to improve the testing process, which is based on changes in requirements specification. In this research, we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment. The research objective is to… More >

  • Open Access

    ARTICLE

    Investigation of the Damping Abilities of Sheep Wool Reinforced Expanded Polystyrene Core Layer Composites at Different Energies

    İbrahim Yavuz1,*, Ercan Şimşir1, Kenan Budak2

    Journal of Polymer Materials, Vol.41, No.1, pp. 1-14, 2024, DOI:10.32604/jpm.2024.052279 - 21 June 2024

    Abstract In this study, natural fiber reinforced polymer foam core layered composites were produced for the automotive industry. Sheep wool was used as natural fiber. Polymer foam with a single layer XPS foam structure was used as the core material. XPS foams and fibers are bonded to the upper and lower sides of the foams with the help of resin. Samples were produced with one and two layers on both sides, with a total of two and four layers. Production was carried out using the vacuum bagging method using the manual laying method. After the production More >

Displaying 1-10 on page 1 of 162. Per Page