Shuxin Tan1, Wei Yan2, Lei Zhao1, Xianglin Zhang3,*, Ziqiang Man2, Yu Lu2, Teng Liu2, Gaoyue Zhong2, Weiqun Liu2, Linjun Shi3
Energy Engineering, Vol.122, No.12, pp. 5175-5197, 2025, DOI:10.32604/ee.2025.068692
- 27 November 2025
Abstract The integration of large-scale renewable energy introduces frequency instability challenges due to inherent intermittency. While doubly-fed pumped storage units (DFPSUs) offer frequency regulation potential in pumping mode, conventional strategies fail to address hydraulic-mechanical coupling dynamics and operational constraints, limiting their effectiveness. This paper presents an innovative primary frequency control strategy for double-fed pumped storage units (DFPSUs) operating in pumping mode, integrating an adaptive parameter calculation method. This method is constrained by operational speed and power limits, addressing key performance factors. A dynamic model that incorporates the reversible pump-turbine characteristics is developed to translate frequency deviations… More >