Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,310)
  • Open Access

    ARTICLE

    An Intrusion Detection System for SDN Using Machine Learning

    G. Logeswari*, S. Bose, T. Anitha

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 867-880, 2023, DOI:10.32604/iasc.2023.026769 - 06 June 2022

    Abstract Software Defined Networking (SDN) has emerged as a promising and exciting option for the future growth of the internet. SDN has increased the flexibility and transparency of the managed, centralized, and controlled network. On the other hand, these advantages create a more vulnerable environment with substantial risks, culminating in network difficulties, system paralysis, online banking frauds, and robberies. These issues have a significant detrimental impact on organizations, enterprises, and even economies. Accuracy, high performance, and real-time systems are necessary to achieve this goal. Using a SDN to extend intelligent machine learning methodologies in an Intrusion… More >

  • Open Access

    ARTICLE

    Metaheuristics with Optimal Deep Transfer Learning Based Copy-Move Forgery Detection Technique

    C. D. Prem Kumar1,*, S. Saravana Sundaram2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 881-899, 2023, DOI:10.32604/iasc.2023.025766 - 06 June 2022

    Abstract The extensive availability of advanced digital image technologies and image editing tools has simplified the way of manipulating the image content. An effective technique for tampering the identification is the copy-move forgery. Conventional image processing techniques generally search for the patterns linked to the fake content and restrict the usage in massive data classification. Contrastingly, deep learning (DL) models have demonstrated significant performance over the other statistical techniques. With this motivation, this paper presents an Optimal Deep Transfer Learning based Copy Move Forgery Detection (ODTL-CMFD) technique. The presented ODTL-CMFD technique aims to derive a DL… More >

  • Open Access

    ARTICLE

    Monitoring and Prediction of Indoor Air Quality for Enhanced Occupational Health

    Adela POP (Puscasiu), Alexandra Fanca*, Dan Ioan Gota, Honoriu Valean

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 925-940, 2023, DOI:10.32604/iasc.2023.025069 - 06 June 2022

    Abstract The amount of moisture in the air is represented by relative humidity (RH); an ideal level of humidity in the interior environment is between 40% and 60% at temperatures between 18° and 20° Celsius. When the RH falls below this level, the environment becomes dry, which can cause skin dryness, irritation, and discomfort at low temperatures. When the humidity level rises above 60%, a wet atmosphere develops, which encourages the growth of mold and mites. Asthma and allergy symptoms may occur as a result. Human health is harmed by excessive humidity or a lack thereof.… More >

  • Open Access

    ARTICLE

    Machine Learning Controller for DFIG Based Wind Conversion System

    P. Srinivasan1,*, P. Jagatheeswari2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 381-397, 2023, DOI:10.32604/iasc.2023.024179 - 06 June 2022

    Abstract Renewable energy production plays a major role in satisfying electricity demand. Wind power conversion is one of the most popular renewable energy sources compared to other sources. Wind energy conversion has two major types of generators such as the Permanent Magnet Synchronous Generator (PMSG) and the Doubly Fed Induction Generator (DFIG). The maximum power tracking algorithm is a crucial controller, a wind energy conversion system for generating maximum power in different wind speed conditions. In this article, the DFIG wind energy conversion system was developed in Matrix Laboratory (MATLAB) and designed a machine learning (ML) More >

  • Open Access

    ARTICLE

    Detection of Toxic Content on Social Networking Platforms Using Fine Tuned ULMFiT Model

    Hafsa Naveed1, Abid Sohail2, Jasni Mohamad Zain3,*, Noman Saleem4, Rao Faizan Ali5, Shahid Anwar6

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 15-30, 2023, DOI:10.32604/iasc.2023.023277 - 06 June 2022

    Abstract Question and answer websites such as Quora, Stack Overflow, Yahoo Answers and Answer Bag are used by professionals. Multiple users post questions on these websites to get the answers from domain specific professionals. These websites are multilingual meaning they are available in many different languages. Current problem for these types of websites is to handle meaningless and irrelevant content. In this paper we have worked on the Quora insincere questions (questions which are based on false assumptions or questions which are trying to make a statement rather than seeking for helpful answers) dataset in order More >

  • Open Access

    ARTICLE

    Explainable AI Enabled Infant Mortality Prediction Based on Neonatal Sepsis

    Priti Shaw1, Kaustubh Pachpor2, Suresh Sankaranarayanan3,*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 311-325, 2023, DOI:10.32604/csse.2023.025281 - 01 June 2022

    Abstract Neonatal sepsis is the third most common cause of neonatal mortality and a serious public health problem, especially in developing countries. There have been researches on human sepsis, vaccine response, and immunity. Also, machine learning methodologies were used for predicting infant mortality based on certain features like age, birth weight, gestational weeks, and Appearance, Pulse, Grimace, Activity and Respiration (APGAR) score. Sepsis, which is considered the most determining condition towards infant mortality, has never been considered for mortality prediction. So, we have deployed a deep neural model which is the state of art and performed More >

  • Open Access

    ARTICLE

    Oppositional Harris Hawks Optimization with Deep Learning-Based Image Captioning

    V. R. Kavitha1, K. Nimala2, A. Beno3, K. C. Ramya4, Seifedine Kadry5, Byeong-Gwon Kang6, Yunyoung Nam7,*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 579-593, 2023, DOI:10.32604/csse.2023.024553 - 01 June 2022

    Abstract Image Captioning is an emergent topic of research in the domain of artificial intelligence (AI). It utilizes an integration of Computer Vision (CV) and Natural Language Processing (NLP) for generating the image descriptions. It finds use in several application areas namely recommendation in editing applications, utilization in virtual assistance, etc. The development of NLP and deep learning (DL) models find useful to derive a bridge among the visual details and textual semantics. In this view, this paper introduces an Oppositional Harris Hawks Optimization with Deep Learning based Image Captioning (OHHO-DLIC) technique. The OHHO-DLIC technique involves… More >

  • Open Access

    ARTICLE

    Intelligent Machine Learning with Metaheuristics Based Sentiment Analysis and Classification

    R. Bhaskaran1,*, S. Saravanan1, M. Kavitha2, C. Jeyalakshmi3, Seifedine Kadry4, Hafiz Tayyab Rauf5, Reem Alkhammash6

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 235-247, 2023, DOI:10.32604/csse.2023.024399 - 01 June 2022

    Abstract Sentiment Analysis (SA) is one of the subfields in Natural Language Processing (NLP) which focuses on identification and extraction of opinions that exist in the text provided across reviews, social media, blogs, news, and so on. SA has the ability to handle the drastically-increasing unstructured text by transforming them into structured data with the help of NLP and open source tools. The current research work designs a novel Modified Red Deer Algorithm (MRDA) Extreme Learning Machine Sparse Autoencoder (ELMSAE) model for SA and classification. The proposed MRDA-ELMSAE technique initially performs preprocessing to transform the data More >

  • Open Access

    ARTICLE

    Brain Tumor Segmentation through Level Based Learning Model

    K. Dinesh Babu1,*, C. Senthil Singh2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 709-720, 2023, DOI:10.32604/csse.2023.024295 - 01 June 2022

    Abstract Brain tumors are potentially fatal presence of cancer cells over a human brain, and they need to be segmented for accurate and reliable planning of diagnosis. Segmentation process must be carried out in different regions based on which the stages of cancer can be accurately derived. Glioma patients exhibit a different level of challenge in terms of cancer or tumors detection as the Magnetic Resonance Imaging (MRI) images possess varying sizes, shapes, positions, and modalities. The scanner used for sensing the location of tumors cells will be subjected to additional protocols and measures for accuracy,… More >

  • Open Access

    ARTICLE

    Optimal Artificial Intelligence Based Automated Skin Lesion Detection and Classification Model

    Kingsley A. Ogudo1, R. Surendran2,*, Osamah Ibrahim Khalaf3

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 693-707, 2023, DOI:10.32604/csse.2023.024154 - 01 June 2022

    Abstract Skin lesions have become a critical illness worldwide, and the earlier identification of skin lesions using dermoscopic images can raise the survival rate. Classification of the skin lesion from those dermoscopic images will be a tedious task. The accuracy of the classification of skin lesions is improved by the use of deep learning models. Recently, convolutional neural networks (CNN) have been established in this domain, and their techniques are extremely established for feature extraction, leading to enhanced classification. With this motivation, this study focuses on the design of artificial intelligence (AI) based solutions, particularly deep… More >

Displaying 771-780 on page 78 of 1310. Per Page