Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,310)
  • Open Access

    ARTICLE

    Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk

    Polin Rahman1, Ahmed Rifat1, MD. IftehadAmjad Chy1, Mohammad Monirujjaman Khan1,*, Mehedi Masud2, Sultan Aljahdali2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 757-775, 2023, DOI:10.32604/csse.2023.021469 - 01 June 2022

    Abstract Heart failure is now widely spread throughout the world. Heart disease affects approximately 48% of the population. It is too expensive and also difficult to cure the disease. This research paper represents machine learning models to predict heart failure. The fundamental concept is to compare the correctness of various Machine Learning (ML) algorithms and boost algorithms to improve models’ accuracy for prediction. Some supervised algorithms like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), Logistic Regression (LR) are considered to achieve the best results. Some boosting algorithms like Extreme Gradient… More >

  • Open Access

    ARTICLE

    Discovering the Common Traits of Cybercrimes in Pakistan Using Associative Classification with Ant Colony Optimization

    Abdul Rauf1, Muhammad Asif Khan1,*, Hamid Hussain Awan2, Waseem Shahzad3, Najeeb Ul Husaan4

    Journal of Cyber Security, Vol.4, No.4, pp. 201-222, 2022, DOI:10.32604/jcs.2022.038791 - 10 August 2023

    Abstract In the modern world, law enforcement authorities are facing challenges due to the advanced technology used by criminals to commit crimes. Criminals follow specific patterns to carry out their crimes, which can be identified using machine learning and swarm intelligence approaches. This article proposes the use of the Ant Colony Optimization algorithm to create an associative classification of crime data, which can reveal potential relationships between different features and crime types. The experiments conducted in this research show that this approach can discover various associations among the features of crime data and the specific patterns More >

  • Open Access

    ARTICLE

    A Model Average Algorithm for Housing Price Forecast with Evaluation Interpretation

    Jintao Fu1, Yong Zhou1,*, Qian Qiu2, Guangwei Xu3, Neng Wan3

    Journal of Quantum Computing, Vol.4, No.3, pp. 147-163, 2022, DOI:10.32604/jqc.2022.038358 - 03 July 2023

    Abstract In the field of computer research, the increase of data in result of societal progress has been remarkable, and the management of this data and the analysis of linked businesses have grown in popularity. There are numerous practical uses for the capability to extract key characteristics from secondary property data and utilize these characteristics to forecast home prices. Using regression methods in machine learning to segment the data set, examine the major factors affecting it, and forecast home prices is the most popular method for examining pricing information. It is challenging to generate precise forecasts… More >

  • Open Access

    ARTICLE

    An Adaptive-Feature Centric XGBoost Ensemble Classifier Model for Improved Malware Detection and Classification

    J. Pavithra*, S. Selvakumarasamy

    Journal of Cyber Security, Vol.4, No.3, pp. 135-151, 2022, DOI:10.32604/jcs.2022.031889 - 01 February 2023

    Abstract Machine learning (ML) is often used to solve the problem of malware detection and classification, and various machine learning approaches are adapted to the problem of malware classification; still acquiring poor performance by the way of feature selection, and classification. To address the problem, an efficient novel algorithm for adaptive feature-centered XG Boost Ensemble Learner Classifier “AFC-XG Boost” is presented in this paper. The proposed model has been designed to handle varying data sets of malware detection obtained from Kaggle data set. The model turns the XG Boost classifier in several stages to optimize performance.… More >

  • Open Access

    ARTICLE

    Vibration-Based Fault Diagnosis Study on a Hydraulic Brake System Using Fuzzy Logic with Histogram Features

    Alamelu Manghai T Marimuthu1, Jegadeeshwaran Rakkiyannan2,*, Lakshmipathi Jakkamputi1, Sugumaran Vaithiyanathan1, Sakthivel Gnanasekaran2

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 383-396, 2022, DOI:10.32604/sdhm.2022.011396 - 03 January 2023

    Abstract The requirement of fault diagnosis in the field of automobiles is growing higher day by day. The reliability of human resources for the fault diagnosis is uncertain. Brakes are one of the major critical components in automobiles that require closer and active observation. This research work demonstrates a fault diagnosis technique for monitoring the hydraulic brake system using vibration analysis. Vibration signals of a rotating element contain dynamic information about its health condition. Hence, the vibration signals were used for the brake fault diagnosis study. The study was carried out on a brake fault diagnosis More >

  • Open Access

    ARTICLE

    Ensemble Classifier-Based Features Ranking on Employee Attrition

    Yok-Yen Nguwi*

    Journal on Artificial Intelligence, Vol.4, No.3, pp. 189-199, 2022, DOI:10.32604/jai.2022.034064 - 01 December 2022

    Abstract The departure of good employee incurs direct and indirect cost and impacts for an organization. The direct cost arises from hiring to training of the relevant employee. The replacement time and lost productivity affect the running of business processes. This work presents the use of ensemble classifier to identify important attributes that affects attrition significantly. The data consists of attributes related to job function, education level, satisfaction towards work and working relationship, compensation, and frequency of business travel. Both bagging and boosting classifiers were used for testing. The results show that the selected features (nine More >

  • Open Access

    ARTICLE

    A Survey of Machine Learning for Big Data Processing

    Reem Almutiri*, Sarah Alhabeeb, Sarah Alhumud, Rehan Ullah Khan

    Journal on Big Data, Vol.4, No.2, pp. 97-111, 2022, DOI:10.32604/jbd.2022.028363 - 31 October 2022

    Abstract Today’s world is a data-driven one, with data being produced in vast amounts as a result of the rapid growth of technology that permeates every aspect of our lives. New data processing techniques must be developed and refined over time to gain meaningful insights from this vast continuous volume of produced data in various forms. Machine learning technologies provide promising solutions and potential methods for processing large quantities of data and gaining value from it. This study conducts a literature review on the application of machine learning techniques in big data processing. It provides a More >

  • Open Access

    ARTICLE

    Rock Strength Estimation Using Several Tree-Based ML Techniques

    Zida Liu1, Danial Jahed Armaghani2,*, Pouyan Fakharian3, Diyuan Li4, Dmitrii Vladimirovich Ulrikh5, Natalia Nikolaevna Orekhova6, Khaled Mohamed Khedher7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 799-824, 2022, DOI:10.32604/cmes.2022.021165 - 03 August 2022

    Abstract The uniaxial compressive strength (UCS) of rock is an essential property of rock material in different relevant applications, such as rock slope, tunnel construction, and foundation. It takes enormous time and effort to obtain the UCS values directly in the laboratory. Accordingly, an indirect determination of UCS through conducting several rock index tests that are easy and fast to carry out is of interest and importance. This study presents powerful boosting trees evaluation framework, i.e., adaptive boosting machine, extreme gradient boosting machine (XGBoost), and category gradient boosting machine, for estimating the UCS of sandstone. Schmidt… More >

  • Open Access

    REVIEW

    6G-Enabled Internet of Things: Vision, Techniques, and Open Issues

    Mehdi Hosseinzadeh1, Atefeh Hemmati2, Amir Masoud Rahmani3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 509-556, 2022, DOI:10.32604/cmes.2022.021094 - 03 August 2022

    Abstract There are changes in the development of wireless technology systems every decade. 6G (sixth generation) wireless networks improve on previous generations by increasing dependability, accelerating networks, increasing available bandwidth, decreasing latency, and increasing data transmission speed to standardize communication signals. The purpose of this article is to comprehend the current directions in 6G studies and their relationship to the Internet of Things (IoT). Also, this paper discusses the impacts of 6G on IoT, critical requirements and trends for 6G-enabled IoT, new service classes of 6G and IoT technologies, and current 6G-enabled IoT studies selected by… More >

  • Open Access

    ARTICLE

    Blockchain Driven Metaheuristic Route Planning in Secure Vehicular Adhoc Networks

    Siwar Ben Haj Hassine1, Saud S. Alotaibi2, Hadeel Alsolai3, Reem Alshahrani4, Lilia Kechiche5, Mrim M. Alnfiai6, Amira Sayed A. Aziz7, Manar Ahmed Hamza8,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6461-6477, 2022, DOI:10.32604/cmc.2022.032353 - 28 July 2022

    Abstract Nowadays, vehicular ad hoc networks (VANET) turn out to be a core portion of intelligent transportation systems (ITSs), that mainly focus on achieving continual Internet connectivity amongst vehicles on the road. The VANET was utilized to enhance driving safety and build an ITS in modern cities. Driving safety is a main portion of VANET, the privacy and security of these messages should be protected. In this aspect, this article presents a blockchain with sunflower optimization enabled route planning scheme (BCSFO-RPS) for secure VANET. The presented BCSFO-RPS model focuses on the identification of routes in such More >

Displaying 781-790 on page 79 of 1310. Per Page