Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    Advancing Brain Tumor Classification: Evaluating the Efficacy of Machine Learning Models Using Magnetic Resonance Imaging

    Khalid Jamil1, Wahab Khan1, Bilal Khan2, Sarwar Shah Khan2,*

    Digital Engineering and Digital Twin, Vol.3, pp. 1-16, 2025, DOI:10.32604/dedt.2025.058943 - 28 February 2025

    Abstract Brain tumors are one of the deadliest cancers, partly because they’re often difficult to detect early or with precision. Standard Magnetic Resonance Imaging (MRI) imaging, though essential, has limitations, it can miss subtle or early-stage tumors, which delays diagnosis and affects patient outcomes. This study aims to tackle these challenges by exploring how machine learning (ML) can improve the accuracy of brain tumor identification from MRI scans. Motivated by the potential for artificial intillegence (AI) to boost diagnostic accuracy where traditional methods fall short, we tested several ML models, with a focus on the K-Nearest More >

  • Open Access

    ARTICLE

    Semantic Segmentation of Lumbar Vertebrae Using Meijering U-Net (MU-Net) on Spine Magnetic Resonance Images

    Lakshmi S V V1, Shiloah Elizabeth Darmanayagam1,*, Sunil Retmin Raj Cyril2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 733-757, 2025, DOI:10.32604/cmes.2024.056424 - 17 December 2024

    Abstract Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere. Due to its ability to produce a detailed view of the soft tissues, including the spinal cord, nerves, intervertebral discs, and vertebrae, Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine. The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases. It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of… More >

  • Open Access

    ARTICLE

    A combined MRI-PSAD risk stratification system for prioritizing prostate biopsies

    Noam Bar-Yaakov1,2, Ziv Savin1,2, Ibrahim Fahoum2,3, Sophie Barnes2,4, Yuval Bar-Yosef1,2, Ofer Yossepowitch1,2, Gal Keren-Paz1,2, Roy Mano1,2

    Canadian Journal of Urology, Vol.31, No.1, pp. 11793-11801, 2024

    Abstract Introduction: Prostate cancer screening with PSA is associated with low specificity; furthermore, little is known about the optimal timing of biopsy. We aimed to evaluate whether a risk classification system combining PSA density (PSAD) and mpMRI can predict clinically significant cancer and determine biopsy timing.
    Materials and methods: We reviewed the medical records of 256 men with a PI-RADS ≥ 3 lesion on mpMRI who underwent transperineal targeted and systematic biopsies of the prostate between 2017-2019. Patients were stratified into three risk groups based on PSAD and mpMRI findings.
    The study endpoint was clinically significant prostate cancer (CSPC).… More >

  • Open Access

    ARTICLE

    MRI-based PI-RADS score predicts ISUP upgrading and adverse pathology at radical prostatectomy in men with biopsy ISUP 1 prostate cancer

    Snir Dekalo1,2, Ohad Mazliah2, Eyal Barkai1,2, Yuval Bar-Yosef1,2, Haim Herzberg1,2, Tomer Bashi1,2, Ibrahim Fahoum2,3, Sophie Barnes2,4, Mario Sofer1,2, Ofer Yossepowitch1,2, Gal Keren-Paz1,2, Roy Mano1,2

    Canadian Journal of Urology, Vol.31, No.4, pp. 11955-11962, 2024

    Abstract Introduction: Most men diagnosed with very-low and low-risk prostate cancer are candidates for active surveillance; however, there is still a misclassification risk. We examined whether PI-RADS category 4 or 5 combined with ISUP 1 on prostate biopsy predicts upgrading and/ or adverse pathology at radical prostatectomy.
    Materials and methods: A total of 127 patients had ISUP 1 cancer on biopsy after multiparametric MRI (mpMRI) and then underwent radical prostatectomy. We then evaluated them for ISUP upgrading and/or adverse pathology on radical prostatectomy.
    Results: Eight-nine patients (70%) were diagnosed with PI-RADS 4 or 5 lesions. ISUP upgrading was significantly… More >

  • Open Access

    RETRACTION

  • Open Access

    ARTICLE

    Heart-Net: A Multi-Modal Deep Learning Approach for Diagnosing Cardiovascular Diseases

    Deema Mohammed Alsekait1, Ahmed Younes Shdefat2, Ayman Nabil3, Asif Nawaz4,*, Muhammad Rizwan Rashid Rana4, Zohair Ahmed5, Hanaa Fathi6, Diaa Salama AbdElminaam6,7,8

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3967-3990, 2024, DOI:10.32604/cmc.2024.054591 - 12 September 2024

    Abstract Heart disease remains a leading cause of morbidity and mortality worldwide, highlighting the need for improved diagnostic methods. Traditional diagnostics face limitations such as reliance on single-modality data and vulnerability to apparatus faults, which can reduce accuracy, especially with poor-quality images. Additionally, these methods often require significant time and expertise, making them less accessible in resource-limited settings. Emerging technologies like artificial intelligence and machine learning offer promising solutions by integrating multi-modality data and enhancing diagnostic precision, ultimately improving patient outcomes and reducing healthcare costs. This study introduces Heart-Net, a multi-modal deep learning framework designed to… More >

  • Open Access

    ARTICLE

    Two Stages Segmentation Algorithm of Breast Tumor in DCE-MRI Based on Multi-Scale Feature and Boundary Attention Mechanism

    Bing Li1,2,*, Liangyu Wang1, Xia Liu1,2, Hongbin Fan1, Bo Wang3, Shoudi Tong1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1543-1561, 2024, DOI:10.32604/cmc.2024.052009 - 18 July 2024

    Abstract Nuclear magnetic resonance imaging of breasts often presents complex backgrounds. Breast tumors exhibit varying sizes, uneven intensity, and indistinct boundaries. These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation. Thus, we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms. Initially, the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs. Subsequently, we devise a fusion network incorporating multi-scale features and boundary attention mechanisms for breast tumor segmentation. We incorporate multi-scale parallel dilated convolution modules into… More >

  • Open Access

    ARTICLE

    Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion

    Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2, Naeem ur Rahman6

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 35-53, 2024, DOI:10.32604/jimh.2024.051340 - 08 July 2024

    Abstract Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis and treatment. To harness the complementary data provided by various modalities, these images are amalgamated to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details, captures small information, and sharpens… More >

  • Open Access

    ARTICLE

    GliomaCNN: An Effective Lightweight CNN Model in Assessment of Classifying Brain Tumor from Magnetic Resonance Images Using Explainable AI

    Md. Atiqur Rahman1, Mustavi Ibne Masum1, Khan Md Hasib2, M. F. Mridha3,*, Sultan Alfarhood4, Mejdl Safran4,*, Dunren Che5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2425-2448, 2024, DOI:10.32604/cmes.2024.050760 - 08 July 2024

    Abstract Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality. This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging (MRI). It focuses on distinguishing between Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG). LGGs are benign and typically manageable with surgical resection, while HGGs are malignant and more aggressive. The research introduces an innovative custom convolutional neural network (CNN) model, Glioma-CNN. GliomaCNN stands out as a lightweight CNN model compared to its predecessors. The research utilized the BraTS 2020 More >

  • Open Access

    ARTICLE

    Contrast Normalization Strategies in Brain Tumor Imaging: From Preprocessing to Classification

    Samar M. Alqhtani1, Toufique A. Soomro2,*, Faisal Bin Ubaid3, Ahmed Ali4, Muhammad Irfan5, Abdullah A. Asiri6

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1539-1562, 2024, DOI:10.32604/cmes.2024.051475 - 20 May 2024

    Abstract Cancer-related to the nervous system and brain tumors is a leading cause of mortality in various countries. Magnetic resonance imaging (MRI) and computed tomography (CT) are utilized to capture brain images. MRI plays a crucial role in the diagnosis of brain tumors and the examination of other brain disorders. Typically, manual assessment of MRI images by radiologists or experts is performed to identify brain tumors and abnormalities in the early stages for timely intervention. However, early diagnosis of brain tumors is intricate, necessitating the use of computerized methods. This research introduces an innovative approach for… More > Graphic Abstract

    Contrast Normalization Strategies in Brain Tumor Imaging: From Preprocessing to Classification

Displaying 1-10 on page 1 of 58. Per Page