Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (262)
  • Open Access

    ARTICLE

    Multidomain Correlation-Based Multidimensional CSI Tensor Generation for Device-Free Wi-Fi Sensing

    Liufeng Du1,*, Shaoru Shang1, Linghua Zhang2, Chong Li1, Jianing Yang3, Xiyan Tian1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1749-1767, 2024, DOI:10.32604/cmes.2023.030144 - 17 November 2023

    Abstract Due to the fine-grained communication scenarios characterization and stability, Wi-Fi channel state information (CSI) has been increasingly applied to indoor sensing tasks recently. Although spatial variations are explicitly reflected in CSI measurements, the representation differences caused by small contextual changes are easily submerged in the fluctuations of multipath effects, especially in device-free Wi-Fi sensing. Most existing data solutions cannot fully exploit the temporal, spatial, and frequency information carried by CSI, which results in insufficient sensing resolution for indoor scenario changes. As a result, the well-liked machine learning (ML)-based CSI sensing models still struggling with stable More >

  • Open Access

    ARTICLE

    Construction of a Computational Scheme for the Fuzzy HIV/AIDS Epidemic Model with a Nonlinear Saturated Incidence Rate

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Yasir Nawaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1405-1425, 2024, DOI:10.32604/cmes.2023.028946 - 17 November 2023

    Abstract This work aimed to construct an epidemic model with fuzzy parameters. Since the classical epidemic model does not elaborate on the successful interaction of susceptible and infective people, the constructed fuzzy epidemic model discusses the more detailed versions of the interactions between infective and susceptible people. The next-generation matrix approach is employed to find the reproduction number of a deterministic model. The sensitivity analysis and local stability analysis of the system are also provided. For solving the fuzzy epidemic model, a numerical scheme is constructed which consists of three time levels. The numerical scheme has More >

  • Open Access

    ARTICLE

    On Factorization of N-Qubit Pure States and Complete Entanglement Analysis of 3-Qubit Pure States Containing Exactly Two Terms and Three Terms

    Dhananjay P. Mehendale1,*, Madhav R. Modak2

    Journal of Quantum Computing, Vol.5, pp. 15-24, 2023, DOI:10.32604/jqc.2023.043370 - 05 December 2023

    Abstract A multi-qubit pure quantum state is called separable when it can be factored as the tensor product of 1-qubit pure quantum states. Factorizing a general multi-qubit pure quantum state into the tensor product of its factors (pure states containing a smaller number of qubits) can be a challenging task, especially for highly entangled states. A new criterion based on the proportionality of the rows of certain associated matrices for the existence of certain factorization and a factorization algorithm that follows from this criterion for systematically extracting all the factors is developed in this paper. 3-qubit More >

  • Open Access

    ARTICLE

    Coordinate-Parametric Matrix Model Inspired Square-Conjoint Pattern in Cross Woven for Conventional Bamboo Mat

    Ye Fu1, Liwen Deng1,*, Jinbo Hu2,3,*, Ti Li3, Shanshan Chang2

    Journal of Renewable Materials, Vol.11, No.12, pp. 4025-4038, 2023, DOI:10.32604/jrm.2023.028454 - 10 November 2023

    Abstract In the study, it is proposed that a coordinate-parametric matrix model is performed to a square-conjoint pattern of cross woven (SCPCW) in the bamboo mat. The patterns of SCPCW are firstly detected according to the perspective of configuration, which is divided into the basic-monomer shape and the basic combination shape. Secondly, the compositions of design patterns in SCPCW are analyzed to attain the trend of curve shape. Based on the coordinate-parametric matrix model, the specimens of SCPCW are subsequently accomplished to elaborate the woven logic of bamboo mats. The digital innovation of SCPCW, defined by More > Graphic Abstract

    Coordinate-Parametric Matrix Model Inspired Square-Conjoint Pattern in Cross Woven for Conventional Bamboo Mat

  • Open Access

    ARTICLE

    Application of the Deep Convolutional Neural Network for the Classification of Auto Immune Diseases

    Fayaz Muhammad1, Jahangir Khan1, Asad Ullah1, Fasee Ullah1, Razaullah Khan2, Inayat Khan2, Mohammed ElAffendi3, Gauhar Ali3,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 647-664, 2023, DOI:10.32604/cmc.2023.038748 - 31 October 2023

    Abstract IIF (Indirect Immune Florescence) has gained much attention recently due to its importance in medical sciences. The primary purpose of this work is to highlight a step-by-step methodology for detecting autoimmune diseases. The use of IIF for detecting autoimmune diseases is widespread in different medical areas. Nearly 80 different types of autoimmune diseases have existed in various body parts. The IIF has been used for image classification in both ways, manually and by using the Computer-Aided Detection (CAD) system. The data scientists conducted various research works using an automatic CAD system with low accuracy. The… More >

  • Open Access

    ARTICLE

    Investigation of Particle Breakdown in the Production of Composite Magnesium Chloride and Zeolite Based Thermochemical Energy Storage Materials

    Louis F. Marie*, Karina Sałek, Tadhg S. O’Donovan

    Energy Engineering, Vol.120, No.10, pp. 2193-2209, 2023, DOI:10.32604/ee.2023.043075 - 28 September 2023

    Abstract Composite thermochemical energy storage (TCES) represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply. However, there are open questions about their performance and the root cause of some observed phenomena. Some researchers have observed the breakdown of particles in their production phase, and in their use. This study seeks to investigate the underlying cause of this breakdown. SEM and EDX analysis have been conducted on MgCl2 impregnated 13X zeolite composites of differing diameters, as well as LiX zeolite. This was done in order to study… More > Graphic Abstract

    Investigation of Particle Breakdown in the Production of Composite Magnesium Chloride and Zeolite Based Thermochemical Energy Storage Materials

  • Open Access

    PROCEEDINGS

    Multiscale Modeling for Thermomenchanical Fatigue Damage Analysis and Life Prediction for Woven Ceramic Matrix Composites at Elevated Temperature

    Zhengmao Yang1,*, Junjie Yang2, Yang Chen3, Fulei Jing4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09229

    Abstract Woven ceramic matrix composites (CMCs), exhibiting excellent thermomechanical properties at high temperatures, are promising as alternative materials to the conventional nickel-based superalloys in the hot section components of aero-engines. Therefore, understanding and predicting the lifetime of CMCs is critical. Fatigue prediction of woven CMCs currently involves long-term and costly testing. A feasible alternative is to use predictive modelling based on a deep understanding of the damage mechanisms. Therefore, this study develops a multiscale analysis modelling method for predicting the fatigue life of CMC materials at high temperature by investigating the thermomechanical fatigue damage evolution. To… More >

  • Open Access

    PROCEEDINGS

    Understanding the Micromechanical Behaviors of Particle-Reinforced Al Composite by Nonlocal Crystal Plasticity Modeling

    Haiming Zhang1,2,*, Shilin Zhao1,2, Zhenshan Cui1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.08884

    Abstract Particle-reinforced aluminum matrix composites (PRAMCs) have great potential for application in aerospace, automobile, defense, and electronics due to their high specific strength and stiffness and good resistance to wear and corrosion. Achieving a superior trade-off between the strength and ductility of PRAMCs necessitates an elaborative control of the microstructures, like the size and distribution of particles, as well as grain size, morphology, and texture of the matrix. The multiscale interaction between the particles and the matrix’s microstructure is insufficiently understood due to the lagging of high-resolved in-situ characterization. This work proposes a nonlocal physically based… More >

  • Open Access

    ARTICLE

    An Efficient Numerical Scheme for Biological Models in the Frame of Bernoulli Wavelets

    Fei Li1, Haci Mehmet Baskonus2,*, S. Kumbinarasaiah3, G. Manohara3, Wei Gao4, Esin Ilhan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2381-2408, 2023, DOI:10.32604/cmes.2023.028069 - 03 August 2023

    Abstract This article considers three types of biological systems: the dengue fever disease model, the COVID-19 virus model, and the transmission of Tuberculosis model. The new technique of creating the integration matrix for the Bernoulli wavelets is applied. Also, the novel method proposed in this paper is called the Bernoulli wavelet collocation scheme (BWCM). All three models are in the form system of coupled ordinary differential equations without an exact solution. These systems are converted into a system of algebraic equations using the Bernoulli wavelet collocation scheme. The numerical wave distributions of these governing models are More >

  • Open Access

    REVIEW

    Deep Learning Applied to Computational Mechanics: A Comprehensive Review, State of the Art, and the Classics

    Loc Vu-Quoc1,*, Alexander Humer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1069-1343, 2023, DOI:10.32604/cmes.2023.028130 - 26 June 2023

    Abstract Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting… More >

Displaying 21-30 on page 3 of 262. Per Page