Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Simulation Analysis on Mechanical Property Characterization of Carbon Nanotubes Reinforced Epoxy Composites

    Dan Li1, Li Ding1, Zhengang Liu2, Qiang Li3, Kaiyun Guo1, Hailin Cao1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 145-171, 2020, DOI:10.32604/cmes.2020.010822

    Abstract Carbon nanotube (CNT)-reinforced composites have ultra-high elastic moduli, low densities, and fibrous structures. This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micro- to macro-scales. The nanocomposites were modeled using representative volume elements (RVEs), and finite element code was written to simulate the modeling and loading procedure and obtain equivalent mechanical properties of the RVEs with various volume fractions of CNTs, which can be used directly in the follow-up simulation studies on the macroscopic model of CNT-reinforced nanocomposites. When using the programming to simulate the deformation and fracture process of the CNT-reinforced epoxy composites, the mechanical… More >

  • Open Access


    Mechanics Based Tomography Using Camera Images

    Sevan Goenezen1,*, Ping Luo1, Baik Jin Kim1, Maulik Kotecha1, Yue Mei2,3

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 46-48, 2019, DOI:10.32604/mcb.2019.07348

    Abstract It is well known that the mechanical properties of tissues may vary spatially due to changing tissue types or due to inherent tissue disease. For example, the biomechanical properties are known to vary throughout blood vessels [1]. Diseases such as cancers may also lead to locally altered mechanical properties, thus allow a preliminary diagnosis via finger palpation. Quantifying the mechanical property distribution of tissues for a given constitutive equation will allow to characterize the biomechanical response of tissues. This may help to 1) predict disease progression, 2) diagnose diseases that alter the biomechanics of the tissue, e.g., skin cancers, breast… More >

Displaying 1-10 on page 1 of 2. Per Page