Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ABSTRACT

    Systems Modeling of Cardiomyocyte Mechanobiology

    Philip M. Tan1, Kyle S. Buchholz2, Shulin Cao2, Yasser Aboelkassem2, Jeffrey H. Omens2, Andrew D. McCulloch2,*, Jeffrey J. Saucerman1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 1-3, 2019, DOI:10.32604/mcb.2019.05693

    Abstract In this article, we summarize our systems model of cardiomyocyte mechano-signaling published in PLoS Computational Biology and discuss new approaches to extending these models to predict cardiac myocyte gene expression in response to stretch. More >

  • Open Access

    ARTICLE

    Extracellular Matrix and Cellular Network on Bone Cell Mechanotransduction

    X. E. Guo1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 183-184, 2006, DOI:10.32604/mcb.2006.003.183

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Endothelial cells as mechanical transducers: Enzymatic activity and network formation under cyclic strain

    A. Shukla1,1, A.R. Dunn2,2, M.A. Moses3,3, K.J. Van Vliet4,4

    Molecular & Cellular Biomechanics, Vol.1, No.4, pp. 279-290, 2004, DOI:10.3970/mcb.2004.001.279

    Abstract Although it is established that endothelial cells can respond to external mechanical cues (e.g., alignment in the direction of fluid shear stress), the extent to which mechanical stress and strain applied via the endothelial cell substrate impact biomolecular and cellular processes is not well-understood. This issue is particularly important in the context of inflammation, vascular remodeling, and cancer progression, as each of these processes occurs concurrently with localized increases in strain and marked changes in molecules secreted by adjacent cells. Here, we systematically vary the level and duration of cyclic tensile strain applied to human dermal microvascular and bovine capillary… More >

  • Open Access

    ARTICLE

    On the Molecular Basis for Mechanotransduction

    Roger D. Kamm1,1,2,2, Mohammad R. Kaazempur-Mofrad1,1

    Molecular & Cellular Biomechanics, Vol.1, No.3, pp. 201-210, 2004, DOI:10.3970/mcb.2004.001.201

    Abstract Much is currently known about the signaling pathways that are excited when cells are subjected to a mechanical stimulus, yet we understand little of the process by which the mechanical perturbation is transformed into a biochemical signal. Numerous theories have been proposed, and each has merit. While cells may possess many different ways of responding to stress, the existence of a single unifying principle has much appeal. Here we propose the hypothesis that cells sense mechanical force through changes in protein conformation, leading to altered binding affinities of proteins, ultimately initiating an intracellular signaling cascade or producing changes in the… More >

  • Open Access

    ARTICLE

    The Mechanochemical Basis of Cell and Tissue Regulation

    D.E. Ingber1

    Molecular & Cellular Biomechanics, Vol.1, No.1, pp. 53-68, 2004, DOI:10.3970/mcb.2004.001.053

    Abstract This article is a summary of a lecture presented at a symposium on "Mechanics and Chemistry of Biosystems'' in honor of Professor Y.C. Fung that convened at the University of California, Irvine in February 2004. The article reviews work from our laboratory that focuses on the mechanism by which mechanical and chemical signals interplay to control how individual cells decide whether to grow, differentiate, move, or die, and thereby promote pattern formation during tissue morphogenesis. Pursuit of this challenge has required development and application of new microtechnologies, theoretical formulations, computational models and bioinformatics tools. These approaches have been used to… More >

  • Open Access

    ARTICLE

    Traction Force Measurements of Human Aortic Smooth Muscle Cells Reveal a Motor-Clutch Behavior

    Petit Claudie1, Guignandon Alain2, Avril Stéphane1,*

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 87-108, 2019, DOI:10.32604/mcb.2019.06415

    Abstract The contractile behavior of smooth muscle cells (SMCs) in the aorta is an important determinant of growth, remodeling, and homeostasis. However, quantitative values of SMC basal tone have never been characterized precisely on individual SMCs. Therefore, to address this lack, we developed an in vitro technique based on Traction Force Microscopy (TFM). Aortic SMCs from a human lineage at low passages (4-7) were cultured 2 days in conditions promoting the development of their contractile apparatus and seeded on hydrogels of varying elastic modulus (1, 4, 12 and 25 kPa) with embedded fluorescent microspheres. After complete adhesion, SMCs were artificially detached… More >

  • Open Access

    ARTICLE

    Integration of Biochemical and Biomechanical Signals Regulating Endothelial Barrier Function

    Virginia Aragon Sanabria1, Cheng Dong*

    Molecular & Cellular Biomechanics, Vol.15, No.1, pp. 1-19, 2018, DOI:10.3970/mcb.2018.015.001

    Abstract Endothelial barrier function is critical for tissue homeostasis throughout the body. Disruption of the endothelial monolayer leads to edema, vascular diseases and even cancer metastasis among other pathological conditions. Breakdown of the endothelial barrier integrity triggered by cytokines (e.g.IL-8,IL-1β) and growth factors (e.g.VEGF) is well documented. However, endothelial cells are subject to major biomechanical forces that affect their behavior. Due to their unique location at the interface between circulating blood and surrounding tissues, endothelial cells experience shear stress, strain and contraction forces. More than three decades ago, it was already appreciated that shear flow caused endothelial cells alignment in the… More >

  • Open Access

    ARTICLE

    Effect of Mechanical Pressure on the Thickness and Collagen Synthesis of Mandibular Cartilage and the Contributions of G Proteins

    Min Zhang, Fa-Ming Chen, Yong-Jin Chen∗,‡, Shun Wu, Xin Lv, Rui-Ni Zhao

    Molecular & Cellular Biomechanics, Vol.8, No.1, pp. 43-60, 2011, DOI:10.3970/mcb.2011.008.043

    Abstract To investigate the role of mechanical pressure on cartilage thickness and type II collagen synthesis, and the role of G protein in that process, in vitro organ culture of mandibular cartilage was adopted in this study. A hydraulic pressure-controlled cellular strain unit was used to apply hydrostatic pressurization to explant cultures. The explants were compressed by different pressure values (0 kPa, 100 kPa, and 300 kPa) after pretreatment with or without a selective and direct antagonist (NF023) for the G proteins. After 4, 8 and 12 h of cell culture under each pressure condition, histological sections of the explants were… More >

  • Open Access

    ARTICLE

    Short-Term Shear Stress Induces Rapid Actin Dynamics in Living Endothelial Cells

    Colin K. Choi*, Brian P. Helmke∗,†

    Molecular & Cellular Biomechanics, Vol.5, No.4, pp. 247-258, 2008, DOI:10.3970/mcb.2008.005.247

    Abstract Hemodynamic shear stress guides a variety of endothelial phenotype characteristics, including cell morphology, cytoskeletal structure, and gene expression profile. The sensing and processing of extracellular fluid forces may be mediated by mechanotransmission through the actin cytoskeleton network to intracellular locations of signal initiation. In this study, we identify rapid actin-mediated morphological changes in living subconfluent and confluent bovine aortic endothelial cells (ECs) in response to onset of unidirectional steady fluid shear stress (15 dyn/cm2). After flow onset, subconfluent cells exhibited dynamic edge activity in lamellipodia and small ruffles in the downstream and side directions for the first 12 min; activity… More >

  • Open Access

    ARTICLE

    Role of Shear Stress Direction in Endothelial Mechanotransduction

    Shu Chien*

    Molecular & Cellular Biomechanics, Vol.5, No.1, pp. 1-8, 2008, DOI:10.3970/mcb.2008.005.001

    Abstract Fluid shear stress due to blood flow can modulate functions of endothelial cells (ECs) in blood vessels by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a definite forward direction causes transient activations of many genes that are atherogenic, followed by their down-regulation; laminar shear stress also up-regulates genes that inhibit EC growth. In contrast, disturbed flow patterns with little forward direction cause sustained activations of these atherogenic genes and enhancements of EC mitosis and apoptosis. In straight parts of the arterial tree, laminar shear stress with a definite forward direction has anti-atherogenic effects. At… More >

Displaying 11-20 on page 2 of 24. Per Page