Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    A Convolutional Neural Network-Based Deep Support Vector Machine for Parkinson’s Disease Detection with Small-Scale and Imbalanced Datasets

    Kwok Tai Chui1,*, Varsha Arya1, Brij B. Gupta2,3,4,*, Miguel Torres-Ruiz5, Razaz Waheeb Attar6

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.068842 - 10 November 2025

    Abstract Parkinson’s disease (PD) is a debilitating neurological disorder affecting over 10 million people worldwide. PD classification models using voice signals as input are common in the literature. It is believed that using deep learning algorithms further enhances performance; nevertheless, it is challenging due to the nature of small-scale and imbalanced PD datasets. This paper proposed a convolutional neural network-based deep support vector machine (CNN-DSVM) to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets. A customized kernel function reduces the impact… More >

  • Open Access

    ARTICLE

    Optimizing Feature Selection by Enhancing Particle Swarm Optimization with Orthogonal Initialization and Crossover Operator

    Indu Bala*, Wathsala Karunarathne, Lewis Mitchell

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 727-744, 2025, DOI:10.32604/cmc.2025.065706 - 09 June 2025

    Abstract Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets, significantly increasing data complexity and dimensionality in medical diagnostics. Efficient feature selection methods are critical for improving diagnostic accuracy, reducing computational costs, and enhancing the interpretability of predictive models. Particle Swarm Optimization (PSO), a widely used metaheuristic inspired by swarm intelligence, has shown considerable promise in feature selection tasks. However, conventional PSO often suffers from premature convergence and limited exploration capabilities, particularly in high-dimensional spaces. To overcome these limitations, this study proposes an enhanced PSO framework incorporating Orthogonal… More >

  • Open Access

    ARTICLE

    An Advanced Medical Diagnosis of Breast Cancer Histopathology Using Convolutional Neural Networks

    Ahmed Ben Atitallah1,*, Jannet Kamoun2,3, Meshari D. Alanazi1, Turki M. Alanazi4, Mohammed Albekairi1, Khaled Kaaniche1

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5761-5779, 2025, DOI:10.32604/cmc.2025.063634 - 19 May 2025

    Abstract Breast Cancer (BC) remains a leading malignancy among women, resulting in high mortality rates. Early and accurate detection is crucial for improving patient outcomes. Traditional diagnostic tools, while effective, have limitations that reduce their accessibility and accuracy. This study investigates the use of Convolutional Neural Networks (CNNs) to enhance the diagnostic process of BC histopathology. Utilizing the BreakHis dataset, which contains thousands of histopathological images, we developed a CNN model designed to improve the speed and accuracy of image analysis. Our CNN architecture was designed with multiple convolutional layers, max-pooling layers, and a fully connected… More >

  • Open Access

    REVIEW

    An Iterative PRISMA Review of GAN Models for Image Processing, Medical Diagnosis, and Network Security

    Uddagiri Sirisha1,*, Chanumolu Kiran Kumar2, Sujatha Canavoy Narahari3, Parvathaneni Naga Srinivasu4,5,6

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1757-1810, 2025, DOI:10.32604/cmc.2024.059715 - 17 February 2025

    Abstract The growing spectrum of Generative Adversarial Network (GAN) applications in medical imaging, cyber security, data augmentation, and the field of remote sensing tasks necessitate a sharp spike in the criticality of review of Generative Adversarial Networks. Earlier reviews that targeted reviewing certain architecture of the GAN or emphasizing a specific application-oriented area have done so in a narrow spirit and lacked the systematic comparative analysis of the models’ performance metrics. Numerous reviews do not apply standardized frameworks, showing gaps in the efficiency evaluation of GANs, training stability, and suitability for specific tasks. In this work,… More >

  • Open Access

    ARTICLE

    Medical Diagnosis Based on Multi-Attribute Group Decision-Making Using Extension Fuzzy Sets, Aggregation Operators and Basic Uncertainty Information Granule

    Anastasios Dounis*, Ioannis Palaiothodoros, Anna Panagiotou

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 759-811, 2025, DOI:10.32604/cmes.2024.057888 - 17 December 2024

    Abstract Accurate medical diagnosis, which involves identifying diseases based on patient symptoms, is often hindered by uncertainties in data interpretation and retrieval. Advanced fuzzy set theories have emerged as effective tools to address these challenges. In this paper, new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets (q-ROFS) and interval-valued q-rung orthopair fuzzy sets (IVq-ROFS). Three aggregation operators are proposed in our methodologies: the q-ROF weighted averaging (q-ROFWA), the q-ROF weighted geometric (q-ROFWG), and the q-ROF weighted neutrality averaging (q-ROFWNA), which enhance decision-making under uncertainty. These operators are paired More > Graphic Abstract

    Medical Diagnosis Based on Multi-Attribute Group Decision-Making Using Extension Fuzzy Sets, Aggregation Operators and Basic Uncertainty Information Granule

  • Open Access

    ARTICLE

    The Spherical q-Linear Diophantine Fuzzy Multiple-Criteria Group Decision-Making Based on Differential Measure

    Huzaira Razzaque1, Shahzaib Ashraf1,*, Muhammad Naeem2, Yu-Ming Chu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1925-1950, 2024, DOI:10.32604/cmes.2023.030030 - 17 November 2023

    Abstract Spherical q-linear Diophantine fuzzy sets (Sq-LDFSs) proved more effective for handling uncertainty and vagueness in multi-criteria decision-making (MADM). It does not only cover the data in two variable parameters but is also beneficial for three parametric data. By Pythagorean fuzzy sets, the difference is calculated only between two parameters (membership and non-membership). According to human thoughts, fuzzy data can be found in three parameters (membership uncertainty, and non-membership). So, to make a compromise decision, comparing Sq-LDFSs is essential. Existing measures of different fuzzy sets do, however, can have several flaws that can lead to counterintuitive… More >

  • Open Access

    ARTICLE

    Gait Image Classification Using Deep Learning Models for Medical Diagnosis

    Pavitra Vasudevan1, R. Faerie Mattins1, S. Srivarshan1, Ashvath Narayanan1, Gayatri Wadhwani1, R. Parvathi1, R. Maheswari2,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6039-6063, 2023, DOI:10.32604/cmc.2023.032331 - 28 December 2022

    Abstract Gait refers to a person’s particular movements and stance while moving around. Although each person’s gait is unique and made up of a variety of tiny limb orientations and body positions, they all have common characteristics that help to define normalcy. Swiftly identifying such characteristics that are difficult to spot by the naked eye, can help in monitoring the elderly who require constant care and support. Analyzing silhouettes is the easiest way to assess and make any necessary adjustments for a smooth gait. It also becomes an important aspect of decision-making while analyzing and monitoring… More >

  • Open Access

    ARTICLE

    An Efficient Medical Image Deep Fusion Model Based on Convolutional Neural Networks

    Walid El-Shafai1,2, Noha A. El-Hag3, Ahmed Sedik4, Ghada Elbanby5, Fathi E. Abd El-Samie1, Naglaa F. Soliman6, Hussah Nasser AlEisa7,*, Mohammed E. Abdel Samea8

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2905-2925, 2023, DOI:10.32604/cmc.2023.031936 - 31 October 2022

    Abstract Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy. Deep learning provides a high performance for several medical image analysis applications. This paper proposes a deep learning model for the medical image fusion process. This model depends on Convolutional Neural Network (CNN). The basic idea of the proposed model is to extract features from both CT and MR images. Then, an additional process is executed on the extracted features. After that, the fused feature map is reconstructed to obtain the resulting fused image. More >

  • Open Access

    ARTICLE

    Analysis of Brain MRI: AI-Assisted Healthcare Framework for the Smart Cities

    Walid El-Shafai1,*, Randa Ali1, Ahmed Sedik2, Taha El-Sayed Taha1, Mohammed Abd-Elnaby3, Fathi E. Abd El-Samie1

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1843-1856, 2023, DOI:10.32604/iasc.2023.019198 - 19 July 2022

    Abstract The use of intelligent machines to work and react like humans is vital in emerging smart cities. Computer-aided analysis of complex and huge MRI (Magnetic Resonance Imaging) scans is very important in healthcare applications. Among AI (Artificial Intelligence) driven healthcare applications, tumor detection is one of the contemporary research fields that have become attractive to researchers. There are several modalities of imaging performed on the brain for the purpose of tumor detection. This paper offers a deep learning approach for detecting brain tumors from MR (Magnetic Resonance) images based on changes in the division of… More >

  • Open Access

    REVIEW

    Explainable Artificial Intelligence–A New Step towards the Trust in Medical Diagnosis with AI Frameworks: A Review

    Nilkanth Mukund Deshpande1,2, Shilpa Gite6,7,*, Biswajeet Pradhan3,4,5, Mazen Ebraheem Assiri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 843-872, 2022, DOI:10.32604/cmes.2022.021225 - 03 August 2022

    Abstract Machine learning (ML) has emerged as a critical enabling tool in the sciences and industry in recent years. Today’s machine learning algorithms can achieve outstanding performance on an expanding variety of complex tasks–thanks to advancements in technique, the availability of enormous databases, and improved computing power. Deep learning models are at the forefront of this advancement. However, because of their nested nonlinear structure, these strong models are termed as “black boxes,” as they provide no information about how they arrive at their conclusions. Such a lack of transparencies may be unacceptable in many applications, such… More >

Displaying 1-10 on page 1 of 18. Per Page