Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Narwhal Optimizer: A Nature-Inspired Optimization Algorithm for Solving Complex Optimization Problems

    Raja Masadeh1, Omar Almomani2,*, Abdullah Zaqebah1, Shayma Masadeh3, Kholoud Alshqurat3, Ahmad Sharieh4, Nesreen Alsharman5

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3709-3737, 2025, DOI:10.32604/cmc.2025.066797 - 23 September 2025

    Abstract This research presents a novel nature-inspired metaheuristic optimization algorithm, called the Narwhale Optimization Algorithm (NWOA). The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals, “unicorns of the sea”, particularly the use of their distinctive spiral tusks, which play significant roles in hunting, searching prey, navigation, echolocation, and complex social interaction. Particularly, the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the… More >

  • Open Access

    ARTICLE

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

    Anis Ben Ghorbal1,*, Azedine Grine1, Marwa M. Eid2,3,*, El-Sayed M. El-Kenawy4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2001-2028, 2025, DOI:10.32604/cmes.2025.068212 - 31 August 2025

    Abstract Preterm birth remains a leading cause of neonatal complications and highlights the need for early and accurate prediction techniques to improve both fetal and maternal health outcomes. This study introduces a hybrid approach integrating Long Short-Term Memory (LSTM) networks with the Hybrid Greylag Goose and Particle Swarm Optimization (GGPSO) algorithm to optimize preterm birth classification using Electrohysterogram signals. The dataset consists of 58 samples of 1000-second-long Electrohysterogram recordings, capturing key physiological features such as contraction patterns, entropy, and statistical variations. Statistical analysis and feature selection methods are applied to identify the most relevant predictors and More > Graphic Abstract

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

  • Open Access

    ARTICLE

    Differential Evolution with Improved Equilibrium Optimizer for Combined Heat and Power Economic Dispatch Problem

    Yuanfei Wei1,2, Panpan Song3, Qifang Luo3,4,*, Yongquan Zhou1,2,3,4

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1235-1265, 2025, DOI:10.32604/cmc.2025.066527 - 29 August 2025

    Abstract The combined heat and power economic dispatch (CHPED) problem is a highly intricate energy dispatch challenge that aims to minimize fuel costs while adhering to various constraints. This paper presents a hybrid differential evolution (DE) algorithm combined with an improved equilibrium optimizer (DE-IEO) specifically for the CHPED problem. The DE-IEO incorporates three enhancement strategies: a chaotic mechanism for initializing the population, an improved equilibrium pool strategy, and a quasi-opposite based learning mechanism. These strategies enhance the individual utilization capabilities of the equilibrium optimizer, while differential evolution boosts local exploitation and escape capabilities. The IEO enhances… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning and Optimized Feature Selection for Oil Spill Detection in Satellite Images

    Ghada Atteia1,*, Mohammed Dabboor2, Konstantinos Karantzalos3, Maali Alabdulhafith1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1747-1767, 2025, DOI:10.32604/cmc.2025.063363 - 09 June 2025

    Abstract This study explores the integration of Synthetic Aperture Radar (SAR) imagery with deep learning and metaheuristic feature optimization techniques for enhanced oil spill detection. This study proposes a novel hybrid approach for oil spill detection. The introduced approach integrates deep transfer learning with the metaheuristic Binary Harris Hawk optimization (BHHO) and Principal Component Analysis (PCA) for improved feature extraction and selection from input SAR imagery. Feature transfer learning of the MobileNet convolutional neural network was employed to extract deep features from the SAR images. The BHHO and PCA algorithms were implemented to identify subsets of… More >

  • Open Access

    ARTICLE

    A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems

    Elif Varol Altay, Osman Altay, Yusuf Özçevik*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1039-1094, 2024, DOI:10.32604/cmes.2023.029404 - 30 December 2023

    Abstract Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve. Such design problems are widely experienced in many engineering fields, such as industry, automotive, construction, machinery, and interdisciplinary research. However, there are established optimization techniques that have shown effectiveness in addressing these types of issues. This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues. The algorithms used in the study are listed as: transient search optimization (TSO), equilibrium optimizer (EO), grey wolf optimizer… More >

  • Open Access

    ARTICLE

    An Optimized Feature Selection and Hyperparameter Tuning Framework for Automated Heart Disease Diagnosis

    Saleh Ateeq Almutairi*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2599-2624, 2023, DOI:10.32604/csse.2023.041609 - 28 July 2023

    Abstract Heart disease is a primary cause of death worldwide and is notoriously difficult to cure without a proper diagnosis. Hence, machine learning (ML) can reduce and better understand symptoms associated with heart disease. This study aims to develop a framework for the automatic and accurate classification of heart disease utilizing machine learning algorithms, grid search (GS), and the Aquila optimization algorithm. In the proposed approach, feature selection is used to identify characteristics of heart disease by using a method for dimensionality reduction. First, feature selection is accomplished with the help of the Aquila algorithm. Then,… More >

  • Open Access

    ARTICLE

    Metaheuristic Optimization with Deep Learning Enabled Smart Grid Stability Prediction

    Afrah Al-Bossly*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6395-6408, 2023, DOI:10.32604/cmc.2023.028433 - 29 April 2023

    Abstract Due to the drastic increase in global population as well as economy, electricity demand becomes considerably high. The recently developed smart grid (SG) technology has the ability to minimize power loss at the time of power distribution. Machine learning (ML) and deep learning (DL) models can be effectually developed for the design of SG stability techniques. This article introduces a new Social Spider Optimization with Deep Learning Enabled Statistical Analysis for Smart Grid Stability (SSODLSA-SGS) prediction model. Primarily, class imbalance data handling process is performed using Synthetic minority oversampling technique (SMOTE) technique. The SSODLSA-SGS model… More >

  • Open Access

    ARTICLE

    Quantum-Inspired Equilibrium Optimizer for Linear Antenna Array

    Binwen Zhu1, Qifang Luo1,3,*, Yongquan Zhou1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 385-413, 2023, DOI:10.32604/cmes.2023.026097 - 23 April 2023

    Abstract With the rapid development of communication technology, the problem of antenna array optimization plays a crucial role. Among many types of antennas, line antenna arrays (LAA) are the most commonly applied, but the side lobe level (SLL) reduction is still a challenging problem. In the radiation process of the linear antenna array, the high side lobe level will interfere with the intensity of the antenna target radiation direction. Many conventional methods are ineffective in obtaining the maximum side lobe level in synthesis, and this paper proposed a quantum equilibrium optimizer (QEO) algorithm for line antenna… More >

  • Open Access

    ARTICLE

    Predicting the Thickness of an Excavation Damaged Zone around the Roadway Using the DA-RF Hybrid Model

    Yuxin Chen1, Weixun Yong1, Chuanqi Li2, Jian Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2507-2526, 2023, DOI:10.32604/cmes.2023.025714 - 09 March 2023

    Abstract After the excavation of the roadway, the original stress balance is destroyed, resulting in the redistribution of stress and the formation of an excavation damaged zone (EDZ) around the roadway. The thickness of EDZ is the key basis for roadway stability discrimination and support structure design, and it is of great engineering significance to accurately predict the thickness of EDZ. Considering the advantages of machine learning (ML) in dealing with high-dimensional, nonlinear problems, a hybrid prediction model based on the random forest (RF) algorithm is developed in this paper. The model used the dragonfly algorithm… More >

  • Open Access

    ARTICLE

    Estimation of Weibull Distribution Parameters for Wind Speed Characteristics Using Neural Network Algorithm

    Musaed Alrashidi*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1073-1088, 2023, DOI:10.32604/cmc.2023.036170 - 06 February 2023

    Abstract Harvesting the power coming from the wind provides a green and environmentally friendly approach to producing electricity. To facilitate the ongoing advancement in wind energy applications, deep knowledge about wind regime behavior is essential. Wind speed is typically characterized by a statistical distribution, and the two-parameters Weibull distribution has shown its ability to represent wind speeds worldwide. Estimation of Weibull parameters, namely scale and shape parameters, is vital to describe the observed wind speeds data accurately. Yet, it is still a challenging task. Several numerical estimation approaches have been used by researchers to obtain c and… More >

Displaying 1-10 on page 1 of 24. Per Page