Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access



    Khalil Khanafera, Kambiz Vafaib,*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-9, 2010, DOI:10.5098/hmt.v1.2.3004

    Abstract A study was conducted to demonstrate the applications of microcantilevers in biomedical and thermo/fluid fields. The deflection of the microcantilevers due to biomaterial and turbulence effects was highlighted in this work. The novel patented microcantilever assemblies that were presented in this study can increase the signal and decrease the unfavorable deflection due to flow disturbances. This work paves the road for researchers in the area microcantilever based biosensors to design efficient microsensor systems that exhibit minimal errors in the measurements. Fluid-structure interaction was also utilized to investigate some aspects of the fluid flow and heat More >

  • Open Access


    A Modified Multiscale Model for Microcantilever Sensor

    Yan Zhang1, Shengping Shen1

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 17-22, 2008, DOI:10.3970/cmc.2008.008.017

    Abstract In this paper, an existed model for adsorption-induced surface stress is modified with physical clarity, based on the equilibrium of force. In the proposed multiscale model, a four-atom system is used, instead of the existed three-atom system which did not consider the force equilibrium. By analyzing the force state of an atom, the thickness of the first layer atoms can be determined. Thus, the proposed model does not need to determine the layer-thickness by experiments or artificially. The results obtained from the proposed model agree very well with the experimental data. This paper is helpful More >

Displaying 1-10 on page 1 of 2. Per Page