Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    PROCEEDINGS

    Machine Learning-Driven Rational Design and Cross-Scale Simulation in Multi-Principal Element Alloys

    Baobin Xie, Yang Chen, Weizheng Lu, Jia Li*, Qihong Fang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, 2025, DOI:10.32604/icces.2025.010608

    Abstract Multi-principal element alloys have aroused extensive attention due to their outstanding mechanical, physical, and chemical performances. To achieve performance-orientated design with high efficiency and low cost and further predict the deformation mechanism, new design approaches and cross-simulation methods need to be developed. Here, we propose i) the approach combining with high-throughput atomic simulations, mechanical models as well as machine learning, to efficiently search optimal composition and microstructure [1,2]; (ii) a multistage design framework integrating physical laws, mechanical models and machine learning, to solve the two key problems--the forward problem (composition to performance) and the inverse More >

  • Open Access

    PROCEEDINGS

    Strengthening Mechanism and Deformation Behavior of Multi-Principal Element Alloys Using Multiscale Modelling and Simulation

    Weizheng Lu, Shuo Wang, Yang Chen, Jia Li*, Qihong Fang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.010711

    Abstract The multi-principal elemental alloys (MPEAs) exhibit excellent combinations of mechanical properties and radiation-resistant, are considered potential candidates for aerospace industries and advanced reactors. However, the quantitative contribution of microstructure on the strengthening mechanism remains challenging at the micro-scale, which greatly limits the long-term application. To address this, we developed a hierarchical multiscale simulation framework that covers potential physical mechanisms to explore the hardening effects of chemical short-range order (CSRO) and irradiation defects in MPEA. Firstly, by combining atomic simulation, discrete dislocation dynamics, and crystal plasticity finite element method, a hierarchical cross-scale model covering heterostructure lattice… More >

  • Open Access

    PROCEEDINGS

    Modelling and Simulation on Deformation Behaviour and Strengthening Mechanism of Multi-Principal Element Alloys

    Yang Chen1, Baobin Xie1, Weizheng Lu1, Jia Li1,*, Qihong Fang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011624

    Abstract In order to accurately predict and evaluate the mechanical properties of multi-principal element alloys (MPEAs), some new models and simulation methods need to be developed to solve the problems caused by its unique natural characteristics, such as severe lattice distortion. The existing models are based on the development of low concentration alloys, and cannot be well applied to MPEAs. Here, we develop i) the random field theory informed discrete dislocation dynamics simulations based on high-resolution transmission electron microscopy, to systematically clarify the role of heterogeneous lattice strain on the complex interactions between the dislocation loop… More >

  • Open Access

    PROCEEDINGS

    Modeling and Simulation of Irradiation Hardening and Creep in Multi Principal Component Alloys

    Yang Chen1, Jing Peng1, Shuo Wang1, Chao Jiang1, Jia Li1,*, Qihong Fang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.012299

    Abstract Nuclear energy demands radiation-resistant metal materials. Multi-principal element alloys (MPEAs) show superior radiation resistance over traditional alloys due to lattice distortion, promising for advanced reactors. However, damage evolution and mechanical performance of irradiated MPEAs under loading are unclear, limiting long-term application. We investigated hardening behavior induced by irradiation defects like dislocation loops and voids in MPEAs using crystal plasticity models and experiments. Here, we developed i) a stochastic field theory-based discrete dislocation dynamics simulation. A novel cross-slip mechanism in irradiated crystals was unveiled through co-linear reactions between dislocations and diamond perfect loops [1]; ii) With… More >

Displaying 1-10 on page 1 of 4. Per Page