Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (105)
  • Open Access

    ARTICLE

    Liver Tumor Segmentation Based on Multi-Scale and Self-Attention Mechanism

    Fufang Li, Manlin Luo*, Ming Hu, Guobin Wang, Yan Chen

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2835-2850, 2023, DOI:10.32604/csse.2023.039765

    Abstract Liver cancer has the second highest incidence rate among all types of malignant tumors, and currently, its diagnosis heavily depends on doctors’ manual labeling of CT scan images, a process that is time-consuming and susceptible to subjective errors. To address the aforementioned issues, we propose an automatic segmentation model for liver and tumors called Res2Swin Unet, which is based on the Unet architecture. The model combines Attention-Res2 and Swin Transformer modules for liver and tumor segmentation, respectively. Attention-Res2 merges multiple feature map parts with an Attention gate via skip connections, while Swin Transformer captures long-range dependencies and models the input… More >

  • Open Access

    ARTICLE

    DT-Net: Joint Dual-Input Transformer and CNN for Retinal Vessel Segmentation

    Wenran Jia1, Simin Ma1, Peng Geng1, Yan Sun2,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3393-3411, 2023, DOI:10.32604/cmc.2023.040091

    Abstract Retinal vessel segmentation in fundus images plays an essential role in the screening, diagnosis, and treatment of many diseases. The acquired fundus images generally have the following problems: uneven illumination, high noise, and complex structure. It makes vessel segmentation very challenging. Previous methods of retinal vascular segmentation mainly use convolutional neural networks on U Network (U-Net) models, and they have many limitations and shortcomings, such as the loss of microvascular details at the end of the vessels. We address the limitations of convolution by introducing the transformer into retinal vessel segmentation. Therefore, we propose a hybrid method for retinal vessel… More >

  • Open Access

    ARTICLE

    A Transmission and Transformation Fault Detection Algorithm Based on Improved YOLOv5

    Xinliang Tang1, Xiaotong Ru1, Jingfang Su1,*, Gabriel Adonis2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2997-3011, 2023, DOI:10.32604/cmc.2023.038923

    Abstract On the transmission line, the invasion of foreign objects such as kites, plastic bags, and balloons and the damage to electronic components are common transmission line faults. Detecting these faults is of great significance for the safe operation of power systems. Therefore, a YOLOv5 target detection method based on a deep convolution neural network is proposed. In this paper, Mobilenetv2 is used to replace Cross Stage Partial (CSP)-Darknet53 as the backbone. The structure uses depth-wise separable convolution toreduce the amount of calculation and parameters; improve the detection rate. At the same time, to compensate for the detection accuracy, the Squeeze-and-Excitation… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Topology Optimization Method Considering Multiple Structural Performances

    Wenjun Chen1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09095

    Abstract The rapid development of topology optimization has given birth to a large amount of different topology optimization methods, and each of them can manage a class of corresponding engineering problems. However, structures need to meet a variety of requirements in engineering application, such as lightweight and multiple load-bearing performance. To design composite structures that have multiple structural properties, a new multi-scale topology optimization method considering multiple structural performances is proposed in this paper. Based on the fitting functions of the result set and the bisection method, a new method to determine the weight coefficient is proposed in this paper, which… More >

  • Open Access

    PROCEEDINGS

    Characterization of Mechanical Properties of CNFs and the Assembled Microfibers Through a Multi-scale Optimization-Based Inversion Method

    Shuaijun Wang1, Wenqiong Tu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09926

    Abstract Cellulose nanofibrils (CNFs) and the continuously assembled microfibers have shown transversely isotropic behavior in many studies. Due to fact that the size of CNFs and the assembled microfibers is at the nano and micro scale, respectively, the characterization of their mechanical properties is extremely challenge. That greatly hinders the accurate multi-scale modeling and design of CNFs-based materials. In our study, we have characterized the elastic constants of both CNFs microfibers and CNFs through a Multi-scale Optimization Inversion technology. Through the tensile test of CNFs microfibers reinforced resin with different volume fractions and the micromechanics model of microfibers reinforced resin, the… More >

  • Open Access

    ARTICLE

    Rockburst Intensity Grade Prediction Model Based on Batch Gradient Descent and Multi-Scale Residual Deep Neural Network

    Yu Zhang1,2,3, Mingkui Zhang1,2,*, Jitao Li1,2, Guangshu Chen1,2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1987-2006, 2023, DOI:10.32604/csse.2023.040381

    Abstract Rockburst is a phenomenon in which free surfaces are formed during excavation, which subsequently causes the sudden release of energy in the construction of mines and tunnels. Light rockburst only peels off rock slices without ejection, while severe rockburst causes casualties and property loss. The frequency and degree of rockburst damage increases with the excavation depth. Moreover, rockburst is the leading engineering geological hazard in the excavation process, and thus the prediction of its intensity grade is of great significance to the development of geotechnical engineering. Therefore, the prediction of rockburst intensity grade is one problem that needs to be… More >

  • Open Access

    ARTICLE

    Theoretical Analysis of the Galloping Energy Harvesters under Bounded Random Parameter Excitation

    Hang Deng, Jimin Ye*, Wei Li*, Dongmei Huang

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1731-1747, 2023, DOI:10.32604/cmes.2023.028334

    Abstract In this paper, the response properties of galloping energy harvesters under bounded random parameter excitation are studied theoretically. The first-order approximate solution of the galloping energy harvester is derived by applying the multi-scales method. The expression for the largest Lyapunov exponent that determines the trivial solution is derived, and the corresponding simulation diagrams, including the largest Lyapunov exponent diagrams and time domain diagrams, verify our results. Then the steady-state response moments of the nontrivial solution are studied using the moment method, and the analytical expressions for the first-order and second-order moments of the voltage amplitude are obtained, respectively. The corresponding… More >

  • Open Access

    ARTICLE

    MSCNN-LSTM Model for Predicting Return Loss of the UHF Antenna in HF-UHF RFID Tag Antenna

    Zhao Yang1, Yuan Zhang1, Lei Zhu2,*, Lei Huang1, Fangyu Hu3, Yanping Du1, Xiaowei Li1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2889-2904, 2023, DOI:10.32604/cmc.2023.037297

    Abstract High-frequency (HF) and ultrahigh-frequency (UHF) dual-band radio frequency identification (RFID) tags with both near-field and far-field communication can meet different application scenarios. However, it is time-consuming to calculate the return loss of a UHF antenna in a dual-band tag antenna using electromagnetic (EM) simulators. To overcome this, the present work proposes a model of a multi-scale convolutional neural network stacked with long and short-term memory (MSCNN-LSTM) for predicting the return loss of UHF antennas instead of EM simulators. In the proposed MSCNN-LSTM, the MSCNN has three branches, which include three convolution layers with different kernel sizes and numbers. Therefore, MSCNN… More >

  • Open Access

    ARTICLE

    Meta-Learning Multi-Scale Radiology Medical Image Super-Resolution

    Liwei Deng1, Yuanzhi Zhang1, Xin Yang2,*, Sijuan Huang2, Jing Wang3,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2671-2684, 2023, DOI:10.32604/cmc.2023.036642

    Abstract High-resolution medical images have important medical value, but are difficult to obtain directly. Limited by hardware equipment and patient’s physical condition, the resolution of directly acquired medical images is often not high. Therefore, many researchers have thought of using super-resolution algorithms for secondary processing to obtain high-resolution medical images. However, current super-resolution algorithms only work on a single scale, and multiple networks need to be trained when super-resolution images of different scales are needed. This definitely raises the cost of acquiring high-resolution medical images. Thus, we propose a multi-scale super-resolution algorithm using meta-learning. The algorithm combines a meta-learning approach with… More >

  • Open Access

    ARTICLE

    Crack Segmentation Based on Fusing Multi-Scale Wavelet and Spatial-Channel Attention

    Peng Geng*, Ji Lu, Hongtao Ma, Guiyi Yang

    Structural Durability & Health Monitoring, Vol.17, No.1, pp. 1-22, 2023, DOI:10.32604/sdhm.2023.018632

    Abstract Accurate and reliable crack segmentation is a challenge and meaningful task. In this article, aiming at the characteristics of cracks on the concrete images, the intensity frequency information of source images which is obtained by Discrete Wavelet Transform (DWT) is fed into deep learning-based networks to enhance the ability of network on crack segmentation. To well integrate frequency information into network an effective and novel DWTA module based on the DWT and scSE attention mechanism is proposed. The semantic information of cracks is enhanced and the irrelevant information is suppressed by DWTA module. And the gap between frequency information and… More >

Displaying 11-20 on page 2 of 105. Per Page