Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (169)
  • Open Access

    ARTICLE

    CLF-YOLOv8: Lightweight Multi-Scale Fusion with Focal Geometric Loss for Real-Time Night Maritime Detection

    Zhonghao Wang1,2, Xin Liu1,2,*, Changhua Yue3, Haiwen Yuan4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071813 - 09 December 2025

    Abstract To address critical challenges in nighttime ship detection—high small-target missed detection (over 20%), insufficient lightweighting, and limited generalization due to scarce, low-quality datasets—this study proposes a systematic solution. First, a high-quality Night-Ships dataset is constructed via CycleGAN-based day-night transfer, combined with a dual-threshold cleaning strategy (Laplacian variance sharpness filtering and brightness-color deviation screening). Second, a Cross-stage Lightweight Fusion-You Only Look Once version 8 (CLF-YOLOv8) is proposed with key improvements: the Neck network is reconstructed by replacing Cross Stage Partial (CSP) structure with the Cross Stage Partial Multi-Scale Convolutional Block (CSP-MSCB) and integrating Bidirectional Feature Pyramid More >

  • Open Access

    ARTICLE

    FD-YOLO: An Attention-Augmented Lightweight Network for Real-Time Industrial Fabric Defect Detection

    Shaobo Kang, Mingzhi Yang*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071488 - 09 December 2025

    Abstract Fabric defect detection plays a vital role in ensuring textile quality. However, traditional manual inspection methods are often inefficient and inaccurate. To overcome these limitations, we propose FD-YOLO, an enhanced lightweight detection model based on the YOLOv11n framework. The proposed model introduces the Bi-level Routing Attention (BRAttention) mechanism to enhance defect feature extraction, enabling more detailed feature representation. It proposes Deep Progressive Cross-Scale Fusion Neck (DPCSFNeck) to better capture small-scale defects and incorporates a Multi-Scale Dilated Residual (MSDR) module to strengthen multi-scale feature representation. Furthermore, a Shared Detail-Enhanced Lightweight Head (SDELHead) is employed to reduce More >

  • Open Access

    ARTICLE

    Efficient Video Emotion Recognition via Multi-Scale Region-Aware Convolution and Temporal Interaction Sampling

    Xiaorui Zhang1,2,*, Chunlin Yuan3, Wei Sun4, Ting Wang5

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071043 - 09 December 2025

    Abstract Video emotion recognition is widely used due to its alignment with the temporal characteristics of human emotional expression, but existing models have significant shortcomings. On the one hand, Transformer multi-head self-attention modeling of global temporal dependency has problems of high computational overhead and feature similarity. On the other hand, fixed-size convolution kernels are often used, which have weak perception ability for emotional regions of different scales. Therefore, this paper proposes a video emotion recognition model that combines multi-scale region-aware convolution with temporal interactive sampling. In terms of space, multi-branch large-kernel stripe convolution is used to More >

  • Open Access

    ARTICLE

    A Dual-Detection Method for Cashew Ripeness and Anthrax Based on YOLOv11-NSDDil

    Ran Liu, Yawen Chen, Dong Yang*, Jingjing Yang*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.070734 - 09 December 2025

    Abstract In the field of smart agriculture, accurate and efficient object detection technology is crucial for automated crop management. A particularly challenging task in this domain is small object detection, such as the identification of immature fruits or early stage disease spots. These objects pose significant difficulties due to their small pixel coverage, limited feature information, substantial scale variations, and high susceptibility to complex background interference. These challenges frequently result in inadequate accuracy and robustness in current detection models. This study addresses two critical needs in the cashew cultivation industry—fruit maturity and anthracnose detection—by proposing an… More >

  • Open Access

    ARTICLE

    CAFE-GAN: CLIP-Projected GAN with Attention-Aware Generation and Multi-Scale Discrimination

    Xuanhong Wang1, Hongyu Guo1, Jiazhen Li1, Mingchen Wang1, Xian Wang1, Yijun Zhang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.069482 - 10 November 2025

    Abstract Over the past decade, large-scale pre-trained autoregressive and diffusion models rejuvenated the field of text-guided image generation. However, these models require enormous datasets and parameters, and their multi-step generation processes are often inefficient and difficult to control. To address these challenges, we propose CAFE-GAN, a CLIP-Projected GAN with Attention-Aware Generation and Multi-Scale Discrimination, which incorporates a pre-trained CLIP model along with several key architectural innovations. First, we embed a coordinate attention mechanism into the generator to capture long-range dependencies and enhance feature representation. Second, we introduce a trainable linear projection layer after the CLIP text… More >

  • Open Access

    ARTICLE

    M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement

    Zhongliang Wei1,*, Jianlong An1, Chang Su2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069335 - 10 November 2025

    Abstract Images taken in dim environments frequently exhibit issues like insufficient brightness, noise, color shifts, and loss of detail. These problems pose significant challenges to dark image enhancement tasks. Current approaches, while effective in global illumination modeling, often struggle to simultaneously suppress noise and preserve structural details, especially under heterogeneous lighting. Furthermore, misalignment between luminance and color channels introduces additional challenges to accurate enhancement. In response to the aforementioned difficulties, we introduce a single-stage framework, M2ATNet, using the multi-scale multi-attention and Transformer architecture. First, to address the problems of texture blurring and residual noise, we design… More >

  • Open Access

    ARTICLE

    EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture

    Zhiyong Deng1, Yanchen Ye2, Jiangling Guo1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069090 - 10 November 2025

    Abstract With the rapid expansion of drone applications, accurate detection of objects in aerial imagery has become crucial for intelligent transportation, urban management, and emergency rescue missions. However, existing methods face numerous challenges in practical deployment, including scale variation handling, feature degradation, and complex backgrounds. To address these issues, we propose Edge-enhanced and Detail-Capturing You Only Look Once (EHDC-YOLO), a novel framework for object detection in Unmanned Aerial Vehicle (UAV) imagery. Based on the You Only Look Once version 11 nano (YOLOv11n) baseline, EHDC-YOLO systematically introduces several architectural enhancements: (1) a Multi-Scale Edge Enhancement (MSEE) module… More >

  • Open Access

    ARTICLE

    FMCSNet: Mobile Devices-Oriented Lightweight Multi-Scale Object Detection via Fast Multi-Scale Channel Shuffling Network Model

    Lijuan Huang1, Xianyi Liu2, Jinping Liu2,*, Pengfei Xu2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.068818 - 10 November 2025

    Abstract The ubiquity of mobile devices has driven advancements in mobile object detection. However, challenges in multi-scale object detection in open, complex environments persist due to limited computational resources. Traditional approaches like network compression, quantization, and lightweight design often sacrifice accuracy or feature representation robustness. This article introduces the Fast Multi-scale Channel Shuffling Network (FMCSNet), a novel lightweight detection model optimized for mobile devices. FMCSNet integrates a fully convolutional Multilayer Perceptron (MLP) module, offering global perception without significantly increasing parameters, effectively bridging the gap between CNNs and Vision Transformers. FMCSNet achieves a delicate balance between computation… More >

  • Open Access

    ARTICLE

    MewCDNet: A Wavelet-Based Multi-Scale Interaction Network for Efficient Remote Sensing Building Change Detection

    Jia Liu1, Hao Chen1, Hang Gu1, Yushan Pan2,3, Haoran Chen1, Erlin Tian4, Min Huang4, Zuhe Li1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068162 - 10 November 2025

    Abstract Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning, disaster emergency response, and resource management. However, existing methods face challenges such as spectral similarity between buildings and backgrounds, sensor variations, and insufficient computational efficiency. To address these challenges, this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network (MewCDNet), which integrates the advantages of Convolutional Neural Networks and Transformers, balances computational costs, and achieves high-performance building change detection. The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction, integrates multi-level feature maps through a multi-scale fusion… More >

  • Open Access

    ARTICLE

    Enhancement of Medical Imaging Technique for Diabetic Retinopathy: Realistic Synthetic Image Generation Using GenAI

    Damodharan Palaniappan1, Tan Kuan Tak2, K. Vijayan3, Balajee Maram4, Pravin R Kshirsagar5, Naim Ahmad6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4107-4127, 2025, DOI:10.32604/cmes.2025.073387 - 23 December 2025

    Abstract A phase-aware cross-modal framework is presented that synthesizes UWF_FA from non-invasive UWF_RI for diabetic retinopathy (DR) stratification. A curated cohort of 1198 patients (2915 UWF_RI and 17,854 UWF_FA images) with strict registration quality supports training across three angiographic phases (initial, mid, final). The generator is based on a modified pix2pixHD with an added Gradient Variance Loss to better preserve microvasculature, and is evaluated using MAE, PSNR, SSIM, and MS-SSIM on held-out pairs. Quantitatively, the mid phase achieves the lowest MAE (98.76 ± 42.67), while SSIM remains high across phases. Expert review shows substantial agreement (Cohen’s More >

Displaying 1-10 on page 1 of 169. Per Page