Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    HCL Net: Deep Learning for Accurate Classification of Honeycombing Lung and Ground Glass Opacity in CT Images

    Hairul Aysa Abdul Halim Sithiq1,*, Liyana Shuib1,*, Muneer Ahmad2, Chermaine Deepa Antony3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.067781 - 10 November 2025

    Abstract Honeycombing Lung (HCL) is a chronic lung condition marked by advanced fibrosis, resulting in enlarged air spaces with thick fibrotic walls, which are visible on Computed Tomography (CT) scans. Differentiating between normal lung tissue, honeycombing lungs, and Ground Glass Opacity (GGO) in CT images is often challenging for radiologists and may lead to misinterpretations. Although earlier studies have proposed models to detect and classify HCL, many faced limitations such as high computational demands, lower accuracy, and difficulty distinguishing between HCL and GGO. CT images are highly effective for lung classification due to their high resolution,… More >

  • Open Access

    ARTICLE

    Anomaly Diagnosis Using Machine Learning Method in Fiber Fault Diagnosis

    Xiaoping Yang1,2,3, Jinku Qiu2,3,4, Xifa Gong5, Jin Ye5, Fei Yao5,*, Jiaqiao Chen6, Xianzan Luo6, Da Qin6

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1515-1539, 2025, DOI:10.32604/cmc.2025.067518 - 29 August 2025

    Abstract In contemporary society, rapid and accurate optical cable fault detection is of paramount importance for ensuring the stability and reliability of optical networks. The emergence of novel faults in optical networks has introduced new challenges, significantly compromising their normal operation. Machine learning has emerged as a highly promising approach. Consequently, it is imperative to develop an automated and reliable algorithm that utilizes telemetry data acquired from Optical Time-Domain Reflectometers (OTDR) to enable real-time fault detection and diagnosis in optical fibers. In this paper, we introduce a multi-scale Convolutional Neural Network–Bidirectional Long Short-Term Memory (CNN-BiLSTM) deep… More >

  • Open Access

    ARTICLE

    Multiclass Classification for Cyber Threats Detection on Twitter

    Adnan Hussein1, Abdulwahab Ali Almazroi2,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3853-3866, 2023, DOI:10.32604/cmc.2023.040856 - 26 December 2023

    Abstract The advances in technology increase the number of internet systems usage. As a result, cybersecurity issues have become more common. Cyber threats are one of the main problems in the area of cybersecurity. However, detecting cybersecurity threats is not a trivial task and thus is the center of focus for many researchers due to its importance. This study aims to analyze Twitter data to detect cyber threats using a multiclass classification approach. The data is passed through different tasks to prepare it for the analysis. Term Frequency and Inverse Document Frequency (TFIDF) features are extracted… More >

  • Open Access

    ARTICLE

    Pancreatic Cancer Data Classification with Quantum Machine Learning

    Amit Saxena1, Smita Saxena2,*

    Journal of Quantum Computing, Vol.5, pp. 1-13, 2023, DOI:10.32604/jqc.2023.044555 - 09 November 2023

    Abstract Quantum computing is a promising new approach to tackle the complex real-world computational problems by harnessing the power of quantum mechanics principles. The inherent parallelism and exponential computational power of quantum systems hold the potential to outpace classical counterparts in solving complex optimization problems, which are pervasive in machine learning. Quantum Support Vector Machine (QSVM) is a quantum machine learning algorithm inspired by classical Support Vector Machine (SVM) that exploits quantum parallelism to efficiently classify data points in high-dimensional feature spaces. We provide a comprehensive overview of the underlying principles of QSVM, elucidating how different… More >

  • Open Access

    ARTICLE

    Comparative Study of Transfer Learning Models for Retinal Disease Diagnosis from Fundus Images

    Kuntha Pin1, Jee Ho Chang2, Yunyoung Nam3,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5821-5834, 2022, DOI:10.32604/cmc.2022.021943 - 11 October 2021

    Abstract While the usage of digital ocular fundus image has been widespread in ophthalmology practice, the interpretation of the image has been still on the hands of the ophthalmologists which are quite costly. We explored a robust deep learning system that detects three major ocular diseases: diabetic retinopathy (DR), glaucoma (GLC), and age-related macular degeneration (AMD). The proposed method is composed of two steps. First, an initial quality evaluation in the classification system is proposed to filter out poor-quality images to enhance its performance, a technique that has not been explored previously. Second, the transfer learning… More >

Displaying 1-10 on page 1 of 5. Per Page