Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Cross-Dataset Transformer-IDS with Calibration and AUC Optimization (Evaluated on NSL-KDD, UNSW-NB15, CIC-IDS2017)

    Chaonan Xin*, Keqing Xu

    Journal of Cyber Security, Vol.7, pp. 483-503, 2025, DOI:10.32604/jcs.2025.071627 - 28 November 2025

    Abstract Intrusion Detection Systems (IDS) have achieved high accuracy on benchmark datasets, yet models often fail to generalize across different network environments. In this paper, we propose Transformer-IDS, a transformer-based network intrusion detection model designed for cross-dataset generalization. The model incorporates a classification token, multi-head self-attention, and embedding layers to learn versatile features, and it introduces a calibration module and an AUC-oriented optimization objective to improve reliability and ranking performance. We evaluate Transformer-IDS on three prominent datasets (NSL-KDD, UNSW-NB15, CIC-IDS2017) in both within-dataset and cross-dataset scenarios. Results demonstrate that while conventional deep IDS models (e.g., CNN-LSTM More >

  • Open Access

    ARTICLE

    Intrusion Detection in NSL-KDD Dataset Using Hybrid Self-Organizing Map Model

    Noveela Iftikhar1, Mujeeb Ur Rehman1, Mumtaz Ali Shah2, Mohammed J. F. Alenazi3, Jehad Ali4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 639-671, 2025, DOI:10.32604/cmes.2025.062788 - 11 April 2025

    Abstract Intrusion attempts against Internet of Things (IoT) devices have significantly increased in the last few years. These devices are now easy targets for hackers because of their built-in security flaws. Combining a Self-Organizing Map (SOM) hybrid anomaly detection system for dimensionality reduction with the inherited nature of clustering and Extreme Gradient Boosting (XGBoost) for multi-class classification can improve network traffic intrusion detection. The proposed model is evaluated on the NSL-KDD dataset. The hybrid approach outperforms the baseline line models, Multilayer perceptron model, and SOM-KNN (k-nearest neighbors) model in precision, recall, and F1-score, highlighting the proposed More >

  • Open Access

    ARTICLE

    A Robust Security Detection Strategy for Next Generation IoT Networks

    Hafida Assmi1, Azidine Guezzaz1, Said Benkirane1, Mourade Azrour2,*, Said Jabbour3, Nisreen Innab4, Abdulatif Alabdulatif5

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 443-466, 2025, DOI:10.32604/cmc.2024.059047 - 03 January 2025

    Abstract Internet of Things (IoT) refers to the infrastructures that connect smart devices to the Internet, operating autonomously. This connectivity makes it possible to harvest vast quantities of data, creating new opportunities for the emergence of unprecedented knowledge. To ensure IoT securit, various approaches have been implemented, such as authentication, encoding, as well as devices to guarantee data integrity and availability. Among these approaches, Intrusion Detection Systems (IDS) is an actual security solution, whose performance can be enhanced by integrating various algorithms, including Machine Learning (ML) and Deep Learning (DL), enabling proactive and accurate detection of… More >

  • Open Access

    ARTICLE

    Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1457-1490, 2024, DOI:10.32604/cmc.2024.051996 - 18 July 2024

    Abstract This study describes improving network security by implementing and assessing an intrusion detection system (IDS) based on deep neural networks (DNNs). The paper investigates contemporary technical ways for enhancing intrusion detection performance, given the vital relevance of safeguarding computer networks against harmful activity. The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset, a popular benchmark for IDS research. The model performs well in both the training and validation stages, with 91.30% training accuracy and 94.38% validation accuracy. Thus, the model shows good learning and generalization capabilities with minor losses of… More >

  • Open Access

    ARTICLE

    A Robust Approach for Multi Classification-Based Intrusion Detection through Stacking Deep Learning Models

    Samia Allaoua Chelloug*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4845-4861, 2024, DOI:10.32604/cmc.2024.051539 - 20 June 2024

    Abstract Intrusion detection is a predominant task that monitors and protects the network infrastructure. Therefore, many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection. In particular, the Network Security Laboratory-Knowledge Discovery in Databases (NSL-KDD) is an extensively used benchmark dataset for evaluating intrusion detection systems (IDSs) as it incorporates various network traffic attacks. It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models, but the performance of these models often decreases when evaluated on… More >

  • Open Access

    ARTICLE

    CNN Channel Attention Intrusion Detection System Using NSL-KDD Dataset

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4319-4347, 2024, DOI:10.32604/cmc.2024.050586 - 20 June 2024

    Abstract Intrusion detection systems (IDS) are essential in the field of cybersecurity because they protect networks from a wide range of online threats. The goal of this research is to meet the urgent need for small-footprint, highly-adaptable Network Intrusion Detection Systems (NIDS) that can identify anomalies. The NSL-KDD dataset is used in the study; it is a sizable collection comprising 43 variables with the label’s “attack” and “level.” It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks (CNN). Furthermore, this dataset makes it easier to conduct… More >

  • Open Access

    ARTICLE

    Adaptive Cloud Intrusion Detection System Based on Pruned Exact Linear Time Technique

    Widad Elbakri1, Maheyzah Md. Siraj1,*, Bander Ali Saleh Al-rimy1, Sultan Noman Qasem2, Tawfik Al-Hadhrami3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3725-3756, 2024, DOI:10.32604/cmc.2024.048105 - 20 June 2024

    Abstract Cloud computing environments, characterized by dynamic scaling, distributed architectures, and complex workloads, are increasingly targeted by malicious actors. These threats encompass unauthorized access, data breaches, denial-of-service attacks, and evolving malware variants. Traditional security solutions often struggle with the dynamic nature of cloud environments, highlighting the need for robust Adaptive Cloud Intrusion Detection Systems (CIDS). Existing adaptive CIDS solutions, while offering improved detection capabilities, often face limitations such as reliance on approximations for change point detection, hindering their precision in identifying anomalies. This can lead to missed attacks or an abundance of false alarms, impacting overall… More >

  • Open Access

    ARTICLE

    Intrusion Detection System with Customized Machine Learning Techniques for NSL-KDD Dataset

    Mohammed Zakariah1, Salman A. AlQahtani2,*, Abdulaziz M. Alawwad1, Abdullilah A. Alotaibi3

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 4025-4054, 2023, DOI:10.32604/cmc.2023.043752 - 26 December 2023

    Abstract Modern networks are at risk from a variety of threats as a result of the enormous growth in internet-based traffic. By consuming time and resources, intrusive traffic hampers the efficient operation of network infrastructure. An effective strategy for preventing, detecting, and mitigating intrusion incidents will increase productivity. A crucial element of secure network traffic is Intrusion Detection System (IDS). An IDS system may be host-based or network-based to monitor intrusive network activity. Finding unusual internet traffic has become a severe security risk for intelligent devices. These systems are negatively impacted by several attacks, which are… More >

  • Open Access

    ARTICLE

    Development of PCCNN-Based Network Intrusion Detection System for EDGE Computing

    Mohd Anul Haq, Mohd Abdul Rahim Khan*, Talal AL-Harbi

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1769-1788, 2022, DOI:10.32604/cmc.2022.018708 - 03 November 2021

    Abstract Intrusion Detection System (IDS) plays a crucial role in detecting and identifying the DoS and DDoS type of attacks on IoT devices. However, anomaly-based techniques do not provide acceptable accuracy for efficacious intrusion detection. Also, we found many difficulty levels when applying IDS to IoT devices for identifying attempted attacks. Given this background, we designed a solution to detect intrusions using the Convolutional Neural Network (CNN) for Enhanced Data rates for GSM Evolution (EDGE) Computing. We created two separate categories to handle the attack and non-attack events in the system. The findings of this study… More >

  • Open Access

    ARTICLE

    Fuzzy Based Latent Dirichlet Allocation for Intrusion Detection in Cloud Using ML

    S. Ranjithkumar1,*, S. Chenthur Pandian2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4261-4277, 2022, DOI:10.32604/cmc.2022.019031 - 11 October 2021

    Abstract The growth of cloud in modern technology is drastic by provisioning services to various industries where data security is considered to be common issue that influences the intrusion detection system (IDS). IDS are considered as an essential factor to fulfill security requirements. Recently, there are diverse Machine Learning (ML) approaches that are used for modeling effectual IDS. Most IDS are based on ML techniques and categorized as supervised and unsupervised. However, IDS with supervised learning is based on labeled data. This is considered as a common drawback and it fails to identify the attack patterns.… More >

Displaying 1-10 on page 1 of 12. Per Page