Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (122)
  • Open Access

    ARTICLE

    An Improved Unsplit and Convolutional Perfectly Matched Layer Absorbing Technique for the Navier-Stokes Equations Using Cut-Off Frequency Shift

    Roland Martin1, Carlos Couder-Castaneda1

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.1, pp. 47-78, 2010, DOI:10.3970/cmes.2010.063.047

    Abstract We develop an unsplit convolutional perfectly matched layer (CPML) technique to absorb efficiently compressible viscous flows and their related supersonic or subsonic regimes at the outer boundary of a distorted computational domain. More particularly subsonic outgoing flows or subsonic wall-boundary layers close to the PML are well absorbed, which is difficult to obtain without creating numerical instabilities over long time periods. This new PML (CPML) introduces the calculation of auxiliary memory variables at each time step and allows an unsplit formulation of the PML. Damping functions involving a high shift in the frequency domain allow a much better absorption of… More >

  • Open Access

    ARTICLE

    Dispersion of One Dimensional Stochastic Waves in Continuous Random Media

    C. Du1, H. Bai2, J. Qu3, X. Su1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.3, pp. 223-248, 2010, DOI:10.3970/cmes.2010.061.223

    Abstract Second, or higher, order harmonics have great potential in fatigue life prediction. In this study, the dispersion properties of waves propagating in the nonlinear random media are investigated. An one dimensional nonlinear model based on the nonlinear Hikata stress-strain relation is used. We applied perturbation method, the Liouville transformation and the smoothing approximation method to solve the one dimensional nonlinear stochastic wave equation. We show easily that the dispersion equations for all higher order terms will be the same with the corresponding linear random medium by perturbation method. The linear stochastic equation with two random coefficients is greatly simplified to… More >

  • Open Access

    ARTICLE

    A High-Order Time and Space Formulation of the Unsplit Perfectly Matched Layer for the Seismic Wave Equation Using Auxiliary Differential Equations (ADE-PML)

    R. Martin1, D. Komatitsch1,2, S. D. Gedney3, E. Bruthiaux1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.1, pp. 17-42, 2010, DOI:10.3970/cmes.2010.056.017

    Abstract Unsplit convolutional perfectly matched layers (CPML) for the velocity and stress formulation of the seismic wave equation are classically computed based on a second-order finite-difference time scheme. However it is often of interest to increase the order of the time-stepping scheme in order to increase the accuracy of the algorithm. This is important for instance in the case of very long simulations. We study how to define and implement a new unsplit non-convolutional PML called the Auxiliary Differential Equation PML (ADE-PML), based on a high-order Runge-Kutta time-stepping scheme and optimized at grazing incidence. We demonstrate that when a second-order time-stepping… More >

  • Open Access

    ARTICLE

    Five Different Formulations of the Finite Strain Perfectly Plastic Equations

    Chein-Shan Liu 1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.2, pp. 73-94, 2007, DOI:10.3970/cmes.2007.017.073

    Abstract The primary objectives of the present exposition focus on five different types of representations of the plastic equations obtained from an elastic-perfectly plastic model by employing different corotational stress rates. They are (a) an affine nonlinear system with a finite-dimensional Lie algebra, (b) a canonical linear system in the Minkowski space, (c) a non-canonical linear system in the Minkowski space, (d) the Lie-Poisson bracket formulation, and (e) a two-generator and two-bracket formulation. For the affine nonlinear system we prove that the Lie algebra of the vector fields is so(5,1), which has dimensions fifteen, and by the Lie theory the superposition… More >

  • Open Access

    ARTICLE

    An Innovative Open Boundary Treatment for Nonlinear Water Waves in a Numerical Wave Tank

    S.-P. Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.2, pp. 227-236, 2001, DOI:10.3970/cmes.2001.002.227

    Abstract Problems defined on infinite domains must be treated on a finite computational domain. The treatment of the artificially placed boundaries (usually referred to as open boundaries) of such domain truncations can be quite subtle; an over truncation would normally result in large, undesirable reflection of signals back to the computational domain whereas an under truncation would imply an injudicious use of computational resources. In particular, problems occur when strongly nonlinear free surface waves generated in a numerical wave tank are passing through such an open boundary.
    In this paper, some recent numerical test results of an innovative treatment of… More >

  • Open Access

    ARTICLE

    Numerical Solution of Nonlinear Exterior Wave Problems Using Local Absorbing Boundary Conditions

    Igor Patlashenko1, Dan Givoli2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.2, pp. 61-70, 2000, DOI:10.3970/cmes.2000.001.221

    Abstract The method of Absorbing Boundary Conditions (ABCs) is considered for the numerical solution of a class of nonlinear exterior wave scattering problems. Recently, a scheme based on the exact nonlocal Dirichlet-to-Neumann (DtN) ABC has been proposed for such problems. Although this method is very accurate, it is also highly expensive computationally. In this paper, the nonlocal ABC is replaced by a low-order local ABC, which is obtained by localizing the DtN condition in a certain "optimal'' way. The performance of the new local scheme is compared to that of the nonlocal scheme via numerical experiments in two dimensions. More >

  • Open Access

    ARTICLE

    Aerothermodynamic and Feasibility Study of a Deployable Aerobraking Re-Entry Capsule

    R. Savino1, V. Carandente1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 453-476, 2012, DOI:10.3970/fdmp.2012.008.453

    Abstract A new small recoverable re-entry capsule with deployable heat shield is analyzed. The possible utilization of the capsule is for safe Earth return of science payloads or data from low Earth orbit at an inexpensive cost, taking advantage of its deployable structure to perform an aerobraking re-entry mission, with relatively low heat and mechanical loads. The system concept for the heat shield is based on umbrella-like frameworks and existing ceramic fabrics. An aerothermodynamic analysis is developed to show that the peak heat flux, for a capsule with a ballistic coefficient lower than 10 kg/m2, is in the range 250-350 kW/m2More >

  • Open Access

    ARTICLE

    Influence of the Air Gap Layer Thickness on Heat Transfer Between the Glass Cover and the Absorber of a Solar Collector

    F.Z. Ferahta1,2, S. Bougoul1, M. Médale2, C. Abid2

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.3, pp. 339-352, 2012, DOI:10.3970/fdmp.2012.008.339

    Abstract A numerical study is carried out to evaluate the thermal performances of a solar collector. As it is well known, that the thermal losses of such systems are mainly of a convective nature, the study is concentrated in particular on the features of natural convection that is activated in the air domain delimited by the upper glass and the lower absorber of the solar collector. The efficiency of such a system depends essentially on both the temperature difference and the distance between the absorber and the glass. Since the temperature difference remains an uncontrolled variable (because it depends on the… More >

  • Open Access

    ARTICLE

    Polarization Independent Dual-band Metamaterial Based Radar Absorbing Structure (RAS) for MillimeterWave Applications

    Shiv Narayan1, Latha S.1 and R M Jha1

    CMC-Computers, Materials & Continua, Vol.39, No.3, pp. 217-230, 2014, DOI:10.3970/cmc.2014.039.217

    Abstract The EM analysis of multi-layered metamaterial based radar absorbing structure (RAS) with dual-band characteristics in millimeter wave frequency regime has been carried out in this paper using transmission line transfer matrix (TLTM) method for TE and TM polarizations. The proposed metamaterial-based RAS exhibits dual-band characteristics at centre frequencies 120 GHz and 175 GHz with very low power reflection. It absorbs more than 90% power of incidence wave over the frequency range from 111-131 GHz at first resonance and from 164.5-185 GHz at second resonance without metal backing plate, which is desirable for stealth applications. It also showed very low (<… More >

  • Open Access

    ARTICLE

    Emerging Trends in Terahertz Metamaterial Applications

    Balamati Choudhury1, Sanjana Bisoyi1, Pavani Vijay Reddy1, Manjula S.1 and R. M. Jha1

    CMC-Computers, Materials & Continua, Vol.39, No.3, pp. 179-215, 2014, DOI:10.3970/cmc.2014.039.179

    Abstract The terahertz spectrum of electromagnetic waves is finding its position in various applications of day to day life because of its unique properties, including the penetration through opaque materials. Naturally occurring materials in this range are rare due to the display of a natural breakpoint of both electric, and magnetic resonances in these materials. However recent advances in artificially engineered materials, which show resonance in this region are able to harness desirable properties in the terahertz region. In this paper, terahertz design and fabrication issues have been explored along with their applications. A brief review of metamaterial terahertz applications has… More >

Displaying 111-120 on page 12 of 122. Per Page