Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,555)
  • Open Access

    ARTICLE

    Weight Optimization of Skeletal Structures with Multi-Point Simulated Annealing

    L. Lamberti1,2, C. Pappalettere1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.3, pp. 183-222, 2007, DOI:10.3970/cmes.2007.018.183

    Abstract This paper presents a novel optimization algorithm for minimizing weight of skeletal structures. The algorithm--denoted as MPISA (Multi Point Improved Simulated Annealing)--utilizes a multi-level simulated annealing scheme where different candidate designs are compared simultaneously. This is done in purpose to increase computational efficiency and to minimize the number of exact structural analyses.
    MPISA is tested in three complicated design problems of skeletal structures: (i) sizing optimization of a planar bar truss under five independent loading conditions including 200 design variables; (ii) sizing-configuration optimization of a cantilevered bar truss including 81 design variables; (iii) sizing-configuration optimization of a frame structure… More >

  • Open Access

    ARTICLE

    A Geometric Deformation Constrained Level Set Method for Structural Shape and Topology Optimization

    S.Y. Wang1,2, K.M. Lim2,3, B.C. Khoo2,3, M.Y. Wang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.3, pp. 155-182, 2007, DOI:10.3970/cmes.2007.018.155

    Abstract In this paper, a geometric deformation constrained level set method is presented as an effective approach for structural shape and topology optimization. A level set method is used to capture the motion of the free boundary of a structure. Furthermore, the geometric deformation of the free boundary is constrained to preserve the structural connectivity and/or topology during the level set evolution. An image-processing-based structural connectivity and topology preserving approach is proposed. A connected components labeling technique based on the 4-neighborhood connectivity measure and a binary image is used for the present region identification. The corresponding binary image after an exploratory… More >

  • Open Access

    ARTICLE

    Design Optimization of the Intake of a Small-Scale Turbojet Engine

    R. Amirante1, L.A. Catalano2, A. Dadone1, V.S.E. Daloiso1

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.1, pp. 17-30, 2007, DOI:10.3970/cmes.2007.018.017

    Abstract This paper proposes a gradient-based progressive optimization technique, which can be efficiently combined with black-box simulation codes. Its efficiency relies on the simultaneous convergence of the flow solution, of the gradient evaluation, and of the design update, as well as on the use of progressively finer grids. The developed numerical technique has general validity and is here applied to the fluid-dynamic design optimization of the intake of a small-size turbojet engine, at high load and zero flight speed. Two simplified design criteria are proposed, which avoid simulating the flow in any turbojet components other than the intake itself. Using a… More >

  • Open Access

    ARTICLE

    Dynamic Simulation of Long Flexible Fibers in Shear Flow

    Wenzhong Tang1, Suresh G. Advani1

    CMES-Computer Modeling in Engineering & Sciences, Vol.8, No.2, pp. 165-176, 2005, DOI:10.3970/cmes.2005.008.165

    Abstract An optimization method is proposed to simulate the motion of long flexible fibers in shear flow. The fiber is modeled as spheres connected by massless rigid rods and ball-socket joints. The optimization method is mathematically justified and used to obtain the position of a fiber at the next time step from its current position. Results for a single fiber in simple shear flow agree well with those reported in the literature. The usefulness of the method is demonstrated by simulating the motion of two interactive fibers subjected to shear flow field, and by studying the viscosity of dilute suspensions of… More >

  • Open Access

    ARTICLE

    PDE-Driven Level Sets, Shape Sensitivity and Curvature Flow for Structural Topology Optimization

    Michael Yu Wang1, Xiaoming Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.4, pp. 373-396, 2004, DOI:10.3970/cmes.2004.006.373

    Abstract This paper addresses the problem of structural shape and topology optimization. A level set method is adopted as an alternative approach to the popular homogenization based methods. The paper focuses on four areas of discussion: (1) The level-set model of the structure’s shape is characterized as a region and global representation; the shape boundary is embedded in a higher-dimensional scalar function as its “iso-surface.” Changes of the shape and topology are governed by a partial differential equation (PDE). (2) The velocity vector of the Hamilton-Jacobi PDE is shown to be naturally related to the shape derivative from the classical shape… More >

  • Open Access

    ARTICLE

    A Real-Coded Hybrid Genetic Algorithm to Determine Optimal Resin Injection Locations in the Resin Transfer Molding Process

    R. Mathur1, S. G. Advani2, B. K. Fink3

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 587-602, 2003, DOI:10.3970/cmes.2003.004.587

    Abstract Real number-coded hybrid genetic algorithms for optimal design of resin injection locations for the resin transfer molding process are evaluated in this paper. Resin transfer molding (RTM) is widely used to manufacture composite parts with material and geometric complexities, especially in automotive and aerospace sectors. The sub-optimal location of the resin injection locations (gates) can leads to the formation of resin starved regions and require long mold fill times, thus affecting the part quality and increasing manufacturing costs. There is a need for automated design algorithms and software that can determine the best gate and vent locations for a composite… More >

  • Open Access

    ARTICLE

    Shape Optimization of Elastic Structural Systems Undergoing Large Rotations: Simultaneous Solution Procedure

    Adnan Ibrahimbegovic1, Catherine Knopf-Lenoir2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 337-344, 2003, DOI:10.3970/cmes.2003.004.337

    Abstract In this work we present an unconventional procedure for combining the optimal shape design and nonlinear analysis in mechanics. The main goal of the presented procedure is to enhance computational efficiency for nonlinear problems with respect to the conventional, sequential approach by solving the analysis and design phases simultaneously. A detailed development is presented for the chosen model problem, the 3d rod undergoing large rotations. More >

  • Open Access

    ARTICLE

    Optimization of a Low Reynolds Number Airfoil with Flexible Membrane

    Ori Levin, Wei Shyy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.4, pp. 523-536, 2001, DOI:10.3970/cmes.2001.002.523

    Abstract Typical low Reynolds number airfoils suffer from reduced lift-to-drag ratio and are prone to flow separation. In order to improve the aerodynamic performance of such airfoils in an unsteady freestream, the concept of passive control is investigated. In this study, a membrane with varying thickness distribution and mechanical properties is attached on the upper surface of a modified Clark-Y airfoil and is free to move upwards and downwards in response to the pressure difference across it. The response surface method is employed to investigate the individual and collective effects of the membrane's prestress, elastic modulus, and thickness distribution on aerodynamic… More >

  • Open Access

    ARTICLE

    Optimum Design of Adaptive Truss Structures Using the Integrated Force Method

    R. Sedaghati, A. Suleman1, S. Dost, B. Tabarrok2

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.2, pp. 259-272, 2001, DOI:10.3970/cmes.2001.002.259

    Abstract A structural analysis and optimization method is developed to find the optimal topology of adaptive determinate truss structures under various impact loading conditions. The objective function is based on the maximization of the structural strength subject to geometric constraints. The dynamic structural analysis is based on the integrated finite element force method and the optimization procedure is based on the Sequential Quadratic Programming (SQP) method. The equilibrium matrix is generated automatically through the finite element analysis and the compatibility matrix is obtained directly using the displacement-deformation relations and the Single Value Decomposition (SVD) technique. By combining the equilibrium and the… More >

  • Open Access

    ARTICLE

    Shape Optimization of Body Located in Incompressible Navier--Stokes Flow Based on Optimal Control Theory

    H. Okumura1, M. Kawahara1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.2, pp. 71-78, 2000, DOI:10.3970/cmes.2000.001.231

    Abstract This paper presents a new approach to a shape optimization problem of a body located in the unsteady incompressible viscous flow field based on an optimal control theory. The optimal state is defined by the reduction of drag and lift forces subjected to the body. The state equation used is the transient incompressible Navier--Stokes equations. The shape optimization problem can be formulated to find out geometrical coordinates of the body to minimize the performance function that is defined to evaluate forces subjected to the body. The fractional step method with the implicit temporal integration and the balancing tensor diffusivity (BTD)… More >

Displaying 1511-1520 on page 152 of 1555. Per Page