Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,672)
  • Open Access

    ARTICLE

    Aircraft Structural Integrity Assessment through Computational Intelligence Techniques

    RamanaM. Pidaparti1

    Structural Durability & Health Monitoring, Vol.2, No.3, pp. 131-148, 2006, DOI:10.3970/sdhm.2006.002.131

    Abstract This paper provides an overview of the computational intelligence methods developed for the structural integrity assessment of aging aircraft structures. Computational intelligence techniques reviewed include artificial neural networks, inverse neural network mapping, wavelet based image processing methods, genetic algorithms, spectral element methods, and particle swarm optimization. Multi-site damage, corrosion, and corrosion-fatigue damage in aging aircraft is specifically discussed. Results obtained from selected computational intelligence methods are presented and compared to the existing alternate solutions and experimental data. The results presented illustrate the applicability of computational intelligence methods for assessing the structural integrity of aging aircraft More >

  • Open Access

    ARTICLE

    Analysis and Optimization of Dynamically Loaded Reinforced Plates by the Coupled Boundary and Finite Element Method

    P. Fedelinski1, R. Gorski1

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.1, pp. 31-40, 2006, DOI:10.3970/cmes.2006.015.031

    Abstract The aim of the present work is to analyze and optimize plates in plane strain or stress with stiffeners subjected to dynamic loads. The reinforced structures are analyzed using the coupled boundary and finite element method. The plates are modeled using the dual reciprocity boundary element method (DR-BEM) and the stiffeners using the finite element method (FEM). The matrix equations of motion are formulated for the plate and stiffeners. The equations are coupled using conditions of compatibility of displacements and equilibrium of tractions along the interfaces between the plate and stiffeners. The final set of… More >

  • Open Access

    ARTICLE

    An Ant Colony Optimization Algorithm for Stacking Sequence Design of Composite Laminates

    F. Aymerich1, M. Serra2

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.1, pp. 49-66, 2006, DOI:10.3970/cmes.2006.013.049

    Abstract The study reported in this paper explores the potential of Ant Colony Optimization (ACO) metaheuristic for stacking sequence optimization of composite laminates. ACO is a recently proposed population-based search approach able to deal with a wide range of optimization problems, especially of a combinatorial nature, and inspired by the natural foraging behavior of ant colonies. ACO search processes, in which the activities of real ants are simulated by means of artificial agents that communicate and cooperate through the modification of the local environment, were implemented in a specifically developed numerical algorithm aimed at the lay-up… More >

  • Open Access

    ARTICLE

    Multi–Disciplinary Optimization for the Conceptual Design of Innovative Aircraft Configurations

    Luigi Morino1, Giovanni Bernardini1, Franco Mastroddi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.1, pp. 1-18, 2006, DOI:10.3970/cmes.2006.013.001

    Abstract The paper presents an overview of recent work by the authors and their collaborators on multi--disciplinary optimization for conceptual design, based on the integrated modeling of structures, aerodynamics, and aeroelasticity. The motivation for the work is the design of innovative aircraft configurations, and is therefore first--principles based, since in this case the designer cannot rely upon past experience. The algorithms used and the philosophy behind the choices are discussed. More >

  • Open Access

    ARTICLE

    3D Multi-Material Structural Topology Optimization with the Generalized Cahn-Hilliard Equations

    Shiwei Zhou1, Michael Yu Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.2, pp. 83-102, 2006, DOI:10.3970/cmes.2006.016.083

    Abstract This paper describes a self-mass-conservative Cahn-Hilliard (C-H) model with elastic strain energy (mean compliance) for the optimization of multi-material structure topology. The total free energy of the generalized C-H system can be represented as a Lyapunov functional so that the elastic strain energy, as a part of the total free energy, decreases gradually to attain optimal material distribution. The interface energy relating to phase gradient in the total free energy plays an important role in regularizing the original ill-posed problem by restricting the structure's boundaries. On the other hand, interface coalescence and break-up due to More >

  • Open Access

    ARTICLE

    Topology Optimization of 2D Potential Problems Using Boundary Elements

    Adrián P. Cisilino1

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.2, pp. 99-106, 2006, DOI:10.3970/cmes.2006.015.099

    Abstract Topological Optimization provides a powerful framework to obtain the optimal domain topology for several engineering problems. The Topological Derivative is a function which characterizes the sensitivity of a given problem to the change of its topology, like opening a small hole in a continuum or changing the connectivity of rods in a truss.
    A numerical approach for the topological optimization of 2D potential problems using Boundary Elements is presented in this work. The formulation of the problem is based on recent results which allow computing the topological derivative from potential and flux results. The… More >

  • Open Access

    ARTICLE

    Structural Shape and Topology Optimization Using an Implicit Free Boundary Parametrization Method

    S.Y. Wang1,2, M.Y. Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.2, pp. 119-148, 2006, DOI:10.3970/cmes.2006.013.119

    Abstract In this paper, an implicit free boundary parametrization method is presented as an effective approach for simultaneous shape and topology optimization of structures. The moving free boundary of a structure is embedded as a zero level set of a higher dimensional implicit level set function. The radial basis functions (RBFs) are introduced to parametrize the implicit function with a high level of accuracy and smoothness. The motion of the free boundary is thus governed by a mathematically more convenient ordinary differential equation (ODE). Eigenvalue stability can be guaranteed due to the use of inverse multiquadric… More >

  • Open Access

    ARTICLE

    Microstructure Optimization in Fuel Cell Electrodes using Materials Design

    Dongsheng Li1,2, Ghazal Saheli1, Moe Khaleel2, Hamid Garmestani1

    CMC-Computers, Materials & Continua, Vol.4, No.1, pp. 31-42, 2006, DOI:10.3970/cmc.2006.004.031

    Abstract A multiscale model based on statistical continuum mechanics is proposed to predict the mechanical and electrical properties of heterogeneous porous media. This model is applied within the framework of microstructure sensitive design (MSD) to guide the design of the microstructure in porous lanthanum strontium manganite (LSM) fuel cell electrode. To satisfy the property requirement and compatibility, porosity and its distribution can be adjusted under the guidance of MSD to achieve optimized microstructure. More >

  • Open Access

    ARTICLE

    An Optimization Analysis of UBM Thicknesses and Solder Geometry on A Wafer Level Chip Scale Package Using Robust Methods

    Heng-Cheng Lin1, Chieh Kung2, Rong-Sheng Chen1, Gin-Tiao Liang1

    CMC-Computers, Materials & Continua, Vol.3, No.2, pp. 55-64, 2006, DOI:10.3970/cmc.2006.003.055

    Abstract Wafer level chip scale package (WLCSP) has been recognized providing clear advantages over traditional wire-bond package in relaxing the need of underfill while offering high density of I/O interconnects. Without the underfill, the solder joint reliability becomes more critical. Adding to the reliability concerns is the safety demand trend toward "green'' products on which unleaded material, e.g. lead-free solders, is required. The requirement of lead-free solders on the packages results in a higher reflow temperature profile in the package manufacturing process, in turn, complicating the reliability issue. This paper presents an optimization study, considering the… More >

  • Open Access

    ARTICLE

    Mining of Data from Evolutionary Algorithms for Improving Design Optimization

    Y.S. Lian1, M.S. Liou2

    CMES-Computer Modeling in Engineering & Sciences, Vol.8, No.1, pp. 61-72, 2005, DOI:10.3970/cmes.2005.008.061

    Abstract This paper focuses on integration of computational methods for design optimization based on data mining and knowledge discovery. We propose to use radial basis function neural networks to analyze the large database generated from evolutionary algorithms and to extract the cause-effect relationship, between the objective functions and the input design variables. The aim is to improve the optimization process by either reducing the computation cost or improving the optimal. Also, it is hoped to provide designers with the salient design pattern about the problem under consideration, from the physics-based simulations. The proposed technique is applied More >

Displaying 1651-1660 on page 166 of 1672. Per Page