Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Optimization Study on Regenerative Organic Rankine Cycle (ORC) with Heat Source of Low-Grade Steam

    Zhao Wang1, Su Yan1, Mingfeng Zhu1, Wen Zhu1, Han Zhang2, Xiang Gou2,*

    Energy Engineering, Vol.119, No.6, pp. 2569-2584, 2022, DOI:10.32604/ee.2022.020644

    Abstract Aiming at improving the performance of Organic Rankine Cycle (ORC) system with low-grade steam as heat source, this work studied and optimized the main operating parameters of the ORC system. The effects of evaporation temperature, superheat degree, condensation temperature and regenerator pinch temperature difference on the system performance were obtained. The optimization for the operating parameters is based on the indicators of specific net power output, waste heat pollution, cycle exergy efficiency, and total UA value (the product of overall heat transfer coefficient and heat transfer area of heat exchanger). The results show that the increase of the evaporation temperature… More >

  • Open Access

    ARTICLE

    Experimental Investigation of Organic Rankine Cycle (ORC) for Low Temperature Geothermal Fluid: Effect of Pump Rotation and R-134 Working Fluid in Scroll-Expander

    Nugroho Agung Pambudi1,*, Santiko Wibowo1, Ranto1, Lip Huat Saw2

    Energy Engineering, Vol.118, No.5, pp. 1565-1576, 2021, DOI:10.32604/EE.2021.016642

    Abstract Organic Rankine Cycle (ORC) is one of the solutions to utilize a low temperature geothermal fluid for power generation. The ORC system can be placed at the exit of the separator to extract energy from brine. Furthermore, one of the main components of the system and very important is the pump. Therefore, in this research, the pump rotation is examined to investigate the effect on power output and energy efficiency for low temperature geothermal fluid. The rotation is determined by using an inverter with the following frequencies: 7.5, 10, 12.5, 15 and 17.5 Hz, respectively. R-134 working fluid is employed… More >

Displaying 1-10 on page 1 of 2. Per Page