Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (267)
  • Open Access

    ARTICLE

    Deep Feature-Driven Hybrid Temporal Learning and Instance-Based Classification for DDoS Detection in Industrial Control Networks

    Haohui Su1, Xuan Zhang1,*, Lvjun Zheng1, Xiaojie Shen2, Hua Liao1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072093 - 12 January 2026

    Abstract Distributed Denial-of-Service (DDoS) attacks pose severe threats to Industrial Control Networks (ICNs), where service disruption can cause significant economic losses and operational risks. Existing signature-based methods are ineffective against novel attacks, and traditional machine learning models struggle to capture the complex temporal dependencies and dynamic traffic patterns inherent in ICN environments. To address these challenges, this study proposes a deep feature-driven hybrid framework that integrates Transformer, BiLSTM, and KNN to achieve accurate and robust DDoS detection. The Transformer component extracts global temporal dependencies from network traffic flows, while BiLSTM captures fine-grained sequential dynamics. The learned… More >

  • Open Access

    ARTICLE

    Deep Retraining Approach for Category-Specific 3D Reconstruction Models from a Single 2D Image

    Nour El Houda Kaiber1, Tahar Mekhaznia1, Akram Bennour1,*, Mohammed Al-Sarem2,3,*, Zakaria Lakhdara4, Fahad Ghaban2, Mohammad Nassef5,6

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070337 - 12 January 2026

    Abstract The generation of high-quality 3D models from single 2D images remains challenging in terms of accuracy and completeness. Deep learning has emerged as a promising solution, offering new avenues for improvements. However, building models from scratch is computationally expensive and requires large datasets. This paper presents a transfer-learning-based approach for category-specific 3D reconstruction from a single 2D image. The core idea is to fine-tune a pre-trained model on specific object categories using new, unseen data, resulting in specialized versions of the model that are better adapted to reconstruct particular objects. The proposed approach utilizes a… More >

  • Open Access

    ARTICLE

    A Dynamic Masking-Based Multi-Learning Framework for Sparse Classification

    Woo Hyun Park*, Dong Ryeol Shin

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069949 - 12 January 2026

    Abstract With the recent increase in data volume and diversity, traditional text representation techniques are struggling to capture context, particularly in environments with sparse data. To address these challenges, this study proposes a new model, the Masked Joint Representation Model (MJRM). MJRM approximates the original hypothesis by leveraging multiple elements in a limited context. It dynamically adapts to changes in characteristics based on data distribution through three main components. First, masking-based representation learning, termed selective dynamic masking, integrates topic modeling and sentiment clustering to generate and train multiple instances across different data subsets, whose predictions are… More >

  • Open Access

    ARTICLE

    Dynamic Knowledge Graph Reasoning Based on Distributed Representation Learning

    Qiuru Fu1, Shumao Zhang1, Shuang Zhou1, Jie Xu1,*, Changming Zhao2, Shanchao Li3, Du Xu1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070493 - 09 December 2025

    Abstract Knowledge graphs often suffer from sparsity and incompleteness. Knowledge graph reasoning is an effective way to address these issues. Unlike static knowledge graph reasoning, which is invariant over time, dynamic knowledge graph reasoning is more challenging due to its temporal nature. In essence, within each time step in a dynamic knowledge graph, there exists structural dependencies among entities and relations, whereas between adjacent time steps, there exists temporal continuity. Based on these structural and temporal characteristics, we propose a model named “DKGR-DR” to learn distributed representations of entities and relations by combining recurrent neural networks More >

  • Open Access

    ARTICLE

    Improving Real-Time Animal Detection Using Group Sparsity in YOLOv8: A Solution for Animal-Toy Differentiation

    Zia Ur Rehman1, Ahmad Syed2,*, Abu Tayab3, Ghanshyam G. Tejani4,5,*, Doaa Sami Khafaga6, El-Sayed M. El-kenawy7,8

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.070310 - 09 December 2025

    Abstract Object detection, a major challenge in computer vision and pattern recognition, plays a significant part in many applications, crossing artificial intelligence, face recognition, and autonomous driving. It involves focusing on identifying the detection, localization, and categorization of targets in images. A particularly important emerging task is distinguishing real animals from toy replicas in real-time, mostly for smart camera systems in both urban and natural environments. However, that difficult task is affected by factors such as showing angle, occlusion, light intensity, variations, and texture differences. To tackle these challenges, this paper recommends Group Sparse YOLOv8 (You… More >

  • Open Access

    ARTICLE

    HUANNet: A High-Resolution Unified Attention Network for Accurate Counting

    Haixia Wang, Huan Zhang, Xiuling Wang, Xule Xin, Zhiguo Zhang*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069340 - 10 November 2025

    Abstract Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision, with applications ranging from crowd counting to various other object counting tasks. To address this, we propose HUANNet (High-Resolution Unified Attention Network), a convolutional neural network designed to capture both local features and rich semantic information through a high-resolution representation learning framework, while optimizing computational distribution across parallel branches. HUANNet introduces three core modules: the High-Resolution Attention Module (HRAM), which enhances feature extraction by optimizing multi-resolution feature fusion; the Unified Multi-Scale Attention Module (UMAM), which integrates spatial, channel, and More >

  • Open Access

    ARTICLE

    Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features

    Ghadah Naif Alwakid1, Samabia Tehsin2,*, Mamoona Humayun3,*, Asad Farooq2, Ibrahim Alrashdi1, Amjad Alsirhani1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069162 - 10 November 2025

    Abstract Skin diseases affect millions worldwide. Early detection is key to preventing disfigurement, lifelong disability, or death. Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance, and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks (CNNs). We frame skin lesion recognition as graph-based reasoning and, to ensure fair evaluation and avoid data leakage, adopt a strict lesion-level partitioning strategy. Each image is first over-segmented using SLIC (Simple Linear Iterative Clustering) to produce perceptually homogeneous superpixels. These superpixels form the nodes of a region-adjacency graph whose edges encode… More >

  • Open Access

    ARTICLE

    UGEA-LMD: A Continuous-Time Dynamic Graph Representation Enhancement Framework for Lateral Movement Detection

    Jizhao Liu, Yuanyuan Shao*, Shuqin Zhang, Fangfang Shan, Jun Li

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.068998 - 10 November 2025

    Abstract Lateral movement represents the most covert and critical phase of Advanced Persistent Threats (APTs), and its detection still faces two primary challenges: sample scarcity and “cold start” of new entities. To address these challenges, we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework (UGEA-LMD). First, the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution, enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem. Second, in the embedding space, we model the dependency structure among… More >

  • Open Access

    CASE REPORT

    A case report of epithelioid renal angiomyolipoma with inferior vena cava extension: robotic surgical management and literature review of rare presentation

    Dimindra Karki*, Ghizlane Yaakoubi, Beth Edelblute, Ahmed Aboumohamed*

    Canadian Journal of Urology, Vol.32, No.5, pp. 501-507, 2025, DOI:10.32604/cju.2025.063294 - 30 October 2025

    Abstract Background: Epithelioid angiomyolipoma (EAML) is an uncommon renal tumor variant with histologic and radiologic features that can mimic renal cell carcinoma (RCC) on imaging due to the paucity of fat compared to the classic AML. EAML may exhibit aggressive behavior, including local invasion, recurrence, and distant metastases to the liver, lungs, and lymph nodes. Although recent reports suggest that up to one-third of EAML cases may behave malignantly, variability in diagnostic criteria and limited case series contribute to uncertainty regarding its true clinical course. Case Description: This case report describes a 19-year-old female presenting with an… More >

  • Open Access

    REVIEW

    Binary Code Similarity Detection: Retrospective Review and Future Directions

    Shengjia Chang, Baojiang Cui*, Shaocong Feng

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4345-4374, 2025, DOI:10.32604/cmc.2025.070195 - 23 October 2025

    Abstract Binary Code Similarity Detection (BCSD) is vital for vulnerability discovery, malware detection, and software security, especially when source code is unavailable. Yet, it faces challenges from semantic loss, recompilation variations, and obfuscation. Recent advances in artificial intelligence—particularly natural language processing (NLP), graph representation learning (GRL), and large language models (LLMs)—have markedly improved accuracy, enabling better recognition of code variants and deeper semantic understanding. This paper presents a comprehensive review of 82 studies published between 1975 and 2025, systematically tracing the historical evolution of BCSD and analyzing the progressive incorporation of artificial intelligence (AI) techniques. Particular… More >

Displaying 1-10 on page 1 of 267. Per Page