Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (54)
  • Open Access

    ARTICLE

    Numerical Simulation of Multi-Layer Penetration Process of Binder Droplet in 3DP Technique

    Xiangyu Gao, Weidong Yang*, Hongxuan Xian, Xiyuan Tu, Yuanyuang Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 227-241, 2020, DOI:10.32604/cmes.2020.09923 - 19 June 2020

    Abstract This paper studies the binder droplet injection process in the 3DP technique. The mathematical model of the binder penetration process for multi-nozzle and multi-layer in 3DP technique is established, by using the conservation Level set method. According to the two-dimensional plane model of three-dimensional spatial structure of sand bed, the construction method of an equivalent cylindrical mapping infiltration model is proposed to represent the porosity of the model in the two-dimensional plane, which is exactly the same as that in the three-dimensional space, as well as closer to the arrangement of the three-dimensional space, and… More >

  • Open Access

    ARTICLE

    A Rate-Dependent Peridynamic Model for the Dynamic Behavior of Ceramic Materials

    Bufan Chu1,2, Qiwen Liu1,2, Lisheng Liu1,2,3,*, Xin Lai1,2, Hai Mei1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 151-178, 2020, DOI:10.32604/cmes.2020.010115 - 19 June 2020

    Abstract In this study, a new bond-based peridynamic model is proposed to describe the dynamic properties of ceramics under impact loading. Ceramic materials show pseudo-plastic behavior under certain compressive loadings with high strain-rate, while the characteristic brittleness of the material dominates when it is subjected to tensile loading. In this model, brittle response under tension, softening plasticity under compression and strain-rate effect of ceramics are considered, which makes it possible to accurately capture the overall dynamic process of ceramics. This enables the investigation of the fracture mechanism for ceramic materials, during ballistic impact, in more detail.… More >

  • Open Access

    ARTICLE

    On the Modeling of Non-Classical Problems Involving Liquid Jets and Films and Related Heat Transfer Processes

    Ivan V. Kazachkov1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 491-507, 2019, DOI:10.32604/fdmp.2019.06477

    Abstract Non-classical subjects relating to the dynamics of jet and film flow and related heat transfer processes are considered. These problems, which are relevant to several technological applications, cannot completely be addressed in the frame of the canonical Navier-Stokes equations. The first example deals with the formation of a film flow as a result of the hydraulic shock of a vertical jet impinging on a horizontal plane. The effective thickness of the film resulting from the hydraulic shock is much less than the value obtained using the conventional approach (relying on the assumption of smooth flow),… More >

  • Open Access

    ARTICLE

    Investigation of the Mechanism of Grout Penetration in Intersected Fractures

    Yanxu Guo1, Peng Zhao2, Qingsong Zhang1, Rentai Liu1,*, Lianzhen Zhang3, Yankai Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.4, pp. 321-342, 2019, DOI:10.32604/fdmp.2019.07844

    Abstract To study the penetration mechanism of cement-based slurry in intersected fractures during grouting and the related pressure distribution, we have used two different variants of cement, namely, basic cement slurry and fast-setting cement slurry. The influence of a retarder, time-varying viscosity, fracture width and location of injection hole is also considered. A finite element software is used to implement two and three-dimensional numerical models for grouting of intersected fractures in hydrostatic conditions. Results show that there are significant differences in the diffusion morphology and pressure distribution depending on the considered cement slurry. Retarder can More >

  • Open Access

    ABSTRACT

    An SPH Modeling of Jet Penetration into Underwater Structures

    Zhifan Zhang*, Haoliang Hu, Cheng Wang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.3, pp. 46-46, 2019, DOI:10.32604/icces.2019.06145

    Abstract A metal jet can be formed for a shaped charge subjected to air blast, which can cause local damage on structures. As for the high-velocity jet associated with underwater explosion, a high-pressure shock wave and a long-term bubble can be also generated. Underwater structures can be severely damaged by these three loadings. A Smooth Particle Hydrodynamic (SPH) method has advantages of solving problems of large deformations thanks to its mesh-free Lagrange formulation. Therefore, it is applied to simulate an entire process of a metal-jet penetration into underwater structures. First, a verification of near-field underwater explosion… More >

  • Open Access

    ABSTRACT

    Numerical Prediction of Penetration Shape in Metal Active Gas Welded Joints of Steel Plates

    Hisashi Serizawa1, Shingo Sato2, Fumikazu Miyasaka2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.1, pp. 14-14, 2019, DOI:10.32604/icces.2019.05606

    Abstract It is important to predict the penetration shape of welded joints because the penetration shape strongly affects the strength of joints. As one of the methods for simulating gas metal arc welding (GMAW) process, a three-dimensional, non-stationary thermal model has been developed. By using a finite differential model based on the heat flow equation and taking account of the balance of gravity, surface tension and arc pressure, both molten pool and the penetration shape are successively demonstrated. Although the finger type penetration which is generally observed in metal insert gas (MIG) welding of aluminum alloy… More >

  • Open Access

    ARTICLE

    INVESTIGATION ON THE EFFECT OF INJECTION PRESSURES ON THE SPRAY CHARACTERISTICS FOR DIETHYL ETHER AND DIESEL FUEL AT DIFFERENT CHAMBER TEMPERATURES

    Vijayakumar Thulasi, R. Thundil Karuppa Raj*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.33

    Abstract Diethyl ether is one of the potential alternative fuels for the high speed compression ignition engines that can replace the existing neat diesel fuel. It is well known that the combustion characteristic of a compression ignition engine is highly influenced by the fuel spray structure formed during the injection process. In this paper the spray structure formation for the diethyl ether fuel is studied numerically, using the discrete phase model and it is compared with the neat diesel fuel. The spray is investigated in a constant volume chamber maintained at 30 bar pressure. The fuel… More >

  • Open Access

    ARTICLE

    Numerical investigation of penetration in Ceramic/Aluminum targets using Smoothed particle hydrodynamics method and presenting a modified analytical model

    Ehsan Hedayati1, Mohammad Vahedi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.3, pp. 295-323, 2017, DOI:10.3970/cmes.2017.113.307

    Abstract Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets. In the present research, a modified model based on radius of ceramic cone was presented for ceramic/aluminum targets. In order to investigate and evaluate accuracy of the presented analytic model, obtained results were compared against the results of the Florence’s analytic model and also against numerical modeling results. The phenomenon of impact onto ceramic/aluminum composites were modeled using smoothed particle hydrodynamics (SPH) implemented utilizing ABAQUS Software. Results indicated that, with increasing initial velocity and ceramic thickness and… More >

  • Open Access

    RESIDENT’S CORNER

    Inferior vena cava filter penetration into right proximal ureter

    Christopher M. Sherman1, Sandhya R. Rao1, Sriharsha Talluri1, Amit J. Dwivedi2, Murali K. Ankem1

    Canadian Journal of Urology, Vol.21, No.1, pp. 7160-7162, 2014

    Abstract Inferior vena cava (IVC) filter penetration into the renal collecting system is an infrequent event. We report a case of IVC filter penetration into the right proximal ureter resulting in gross hematuria, hydronephrosis and stone formation. More >

  • Open Access

    ARTICLE

    Research on a Triaxial Rate of Penetration (ROP) Model Related to Unloading in Oil & Gas Drilling

    Hui Zhang1, Deli Gao1,2, Xiaopin Xie1

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.1, pp. 47-64, 2013, DOI:10.3970/cmes.2013.090.047

    Abstract In oil & gas drilling engineering, the rock breaking efficiency as well as the trajectory of the Well should be quantitatively and accurately described by an ideal triaxial Rate of Penetration (ROP) model, taking into account the various objective and subjective factors. However, with the existing triaxial ROP models, it is difficult to achieve these goals. The applications of the existing ROP models are limited, especially in under-balanced drilling (air drilling, foam drilling etc.), because the unloading effect (i.e. the effect of the bottom hole differential pressure on the formation force) has been rarely considered.… More >

Displaying 31-40 on page 4 of 54. Per Page