Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (87)
  • Open Access

    ARTICLE

    Productivity Prediction Model of Perforated Horizontal Well Based on Permeability Calculation in Near-Well High Permeability Reservoir Area

    Shuangshuang Zhang1,*, Kangliang Guo1, Xinchen Gao1, Haoran Yang1, Jinfeng Zhang2, Xing Han3

    Energy Engineering, Vol.121, No.1, pp. 59-75, 2024, DOI:10.32604/ee.2023.041709 - 27 December 2023

    Abstract To improve the productivity of oil wells, perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation. After the perforation operation, the perforation channel around the wellbore will form a near-well high-permeability reservoir area with the penetration depth as the radius, that is, the formation has different permeability characteristics with the perforation depth as the dividing line. Generally, the permeability is measured by the permeability tester, but this approach has a high workload and limited application. In this paper, according to the reservoir characteristics of perforated horizontal wells, the reservoir… More >

  • Open Access

    ARTICLE

    Numerical-Experimental Analysis of the Coal Fracture Formation Mechanism Induced by Liquid CO2 Explosion

    Yun Lei1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3021-3032, 2023, DOI:10.32604/fdmp.2023.029570 - 27 October 2023

    Abstract The highly inefficient simultaneous extraction of coal and gas from low-permeability and high-gas coal seams in deep mines is a major problem often restricting the sustainable development of coal industry. A possible way to solve this problem under deep and complex geological conditions is represented by the technology based on the phase-change induced explosion of liquid carbon dioxide. In this work, the mechanism of formation of the coal mass fracture circle resulting from the gas cracking process is theoretically analyzed. Numerical simulations show that a blasting crushing zone with a radius of 1.0 m is More >

  • Open Access

    ARTICLE

    Evaluation of the Air Leakage Flowrate in Sintering Processes

    Jin Cai1, Xiangwei Kong1,*, Mingzhu Yu1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2791-2812, 2023, DOI:10.32604/fdmp.2023.029692 - 18 September 2023

    Abstract Iron ore sintering is a pre-treatment technology by which ore fines are converted into porous and permeable sinters, which are the used in blast furnaces. This process can be adversely affected by air leakage phenomena of various types. As experimental measurements are relatively difficult and often scarcely reliable, here a theoretical model based on typical fluid-dynamic concepts and relationships is elaborated. Through the analysis of two extreme cases, namely, those in which leakage is due to a small hole or a full rupture, a generalized hole-bed model is introduced, which for the first time also More > Graphic Abstract

    Evaluation of the Air Leakage Flowrate in Sintering Processes

  • Open Access

    ARTICLE

    Experimental Evaluation of Compressive Strength and Gas Permeability of Glass-Powder-Containing Mortar

    Yue Liang, Wenxuan Dai, Wei Chen*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2639-2659, 2023, DOI:10.32604/fdmp.2023.027622 - 25 June 2023

    Abstract Glass powder of various particle sizes (2, 5, 10 and 15 μm) has been assessed as a possible cement substitute for mortars. Different replacement rates of cement (5%, 10%, 15%, and 20%) have been considered for all particle sizes. The accessible porosity, compressive strength, gas permeability and microstructure have been investigated accordingly. The results have shown that adding glass powder up to 20% has a significantly negative effect on the porosity and compressive strength of mortar. The compressive strength initially rises with a 5% replacement and then decreases. Similarly, the gas permeability of the mortar displays… More >

  • Open Access

    ARTICLE

    HEAT TRANSFER ANALYSIS OF MHD CASSON FLUID FLOW BETWEEN TWO POROUS PLATES WITH DIFFERENT PERMEABILITY

    V.S. Sampath Kumar, N.P. Pai , B. Devaki

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-13, 2023, DOI:10.5098/hmt.20.30

    Abstract In the present study, we consider Casson fluid flow between two porous plates with permeability criteria in the presence of heat transfer and magnetic effect. A proper set of similarity transformations simplify the Navier-Stokes equations to non-linear ODEs with boundary conditions. The homotopy perturbation method is an efficient and stable method which is used to get solutions. Further, the results obtained are compared with the solution computed through an effective and efficient finite difference approach. The purpose of this analysis is to study the four different cases arise viz: suction, injection, mixed suction and mixed More >

  • Open Access

    ARTICLE

    A Darcy-Law Based Model for Heat and Moisture Transfer in a Hill Cave

    Fei Liu1, Dongliang Zhang2,*, Qifu Zhu1, Qingyong Su1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2345-2359, 2023, DOI:10.32604/fdmp.2023.027084 - 16 May 2023

    Abstract A hill can be regarded as an environmental carrier of heat. Water, rocks and the internal moisture naturally present in such environment constitute a natural heat accumulator. In the present study, the heat and moisture transfer characteristics in a representative hill cave have been simulated via a method relying on the Darcy’s law. The simulations have been conducted for both steady and unsteady conditions to discern the influence of permeability and geometric parameters on the thermal and moisture transfer processes. The reliability of the simulation has been verified through comparison of the numerical results with More > Graphic Abstract

    A Darcy-Law Based Model for Heat and Moisture Transfer in a Hill Cave

  • Open Access

    ARTICLE

    Remediation of Cu Contaminated Soil by Fe78Si9B13AP Permeability Reaction Barrier Combined with Electrokinetic Method

    Liefei Pei1,2, Xiangyun Zhang1, Zizhou Yuan1,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2969-2983, 2023, DOI:10.32604/jrm.2023.025760 - 27 April 2023

    Abstract Iron-based amorphous crystalline powder Fe78Si9B13AP is used as a permeability reaction barrier (PRB) combined with an electrokinetic method (EK-PRB) to study the removal rate of Cu in contaminated soil. After treating Cucontaminated soil for 5 days under different voltage gradients and soil water content, the soil pH is between 3.1 and 7.2. The increase of voltage gradient and soil water content can effectively promote the movement of Cu2+ to the cathode. The voltage gradient is 3 V/cm, and the water content of 40% is considered to be an optional experimental condition. Therefore, under this condition, the More >

  • Open Access

    ARTICLE

    Research on the Corrosion of J55 Steel Due to Oxygen-Reducing Air Flooding in Low-Permeability Reservoirs

    Liang Wang1, Baofeng Hou1, Yanming Fang3, Jintao Zhang2, Fajian Nie1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1925-1937, 2023, DOI:10.32604/fdmp.2023.025966 - 08 March 2023

    Abstract Oxygen-reducing air flooding is a low-permeability reservoir recovery technology with safety and low-cost advantages. However, in the process of air injection and drive, carbon in the air is oxidized through the crude oil reservoir to generate CO2, and this can cause serious corrosion in the recovery well. In this study, experiments on the corrosion of J55 tubular steel in a fluid environment with coexisting O2 and CO2 in an autoclave are presented. In particular, a weight loss method and a 3D morphometer were used to determine the average and the local corrosion rate. The corrosion surface morphology More >

  • Open Access

    ARTICLE

    Evaluation of Water Transfer Capacity of Poplar with Pectinase Treated under the Solar Interface Evaporation

    Wei Xiong1,2, Dagang Li1,*, Peixing Wei2, Lin Wang2, Qian Feng1

    Journal of Renewable Materials, Vol.11, No.5, pp. 2265-2278, 2023, DOI:10.32604/jrm.2023.025483 - 13 February 2023

    Abstract Poplar wood, which was used as the absorption material for the solar-driven interfacial evaporation, was treated for 3 days, 6 days and 9 days with the pectinase, and then was simulated for photothermal evaporation test at one standard solar radiation intensity (1 kW⋅m−2). The effects of pectinase treatment on cell passage and water migration capacity of poplars were analyzed by the mercury intrusion porosimetry, the scanning electron microscope and fractal theory. It was found that the pit membrane and the ray parenchyma cells of poplar wood were degraded and destroyed after pectinase treatment. Compared with the untreated More >

  • Open Access

    ARTICLE

    Study of the Seepage Mechanism in Thick Heterogeneous Gas Reservoirs

    Xin Huang1,*, Yunpeng Jiang1, Daowu Huang1, Xianke He1, Xianguo Zhang2, Ping Guo3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1679-1691, 2023, DOI:10.32604/fdmp.2023.025312 - 30 January 2023

    Abstract

    The seepage mechanism plays a crucial role in low-permeability gas reservoirs. Compared with conventional gas reservoirs, low-permeability sandstone gas reservoirs are characterized by low porosity, low permeability, strong heterogeneity, and high water saturation. Moreover, their percolation mechanisms are more complex. The present work describes a series of experiments conducted considering low-permeability sandstone cores under pressure-depletion conditions (from the Xihu Depression in the East China Sea Basin). It is shown that the threshold pressure gradient of a low-permeability gas reservoir in thick layers is positively correlated with water saturation and negatively correlated with permeability and porosity. The

    More >

Displaying 21-30 on page 3 of 87. Per Page