Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Rheological Investigation on a Polypropylene/Low Density Polyethylene Blending Melt

    Huayong Liao1,2,3,*, Jing Gao1,2,3, Chunlin Liu1,2,3, Guoliang Tao1,2,3

    Journal of Polymer Materials, Vol.41, No.1, pp. 45-54, 2024, DOI:10.32604/jpm.2024.053021

    Abstract Polymer blending with co-continuous morphology has garnered the interest of many researchers, but corresponding rheological models are rarely presented. In this study, the dynamic rheological behavior of a blend of polypropylene (PP) and low-density polyethylene (LDPE) in the ratio of 50/50 wt% is investigated, and a rheological model suggested by Yu et al. is used to fit the dynamic modulus. The rheological measurement shows that at low frequency, pure PP has higher complex viscosity and dynamic modulus than LDPE. SEM images reveal that the morphology among the 40/60 and 60/40 blends is non-dispersive. The fitting… More >

  • Open Access

    ARTICLE

    A Circular Economy Use of Post-Consumer Polypropylene Packaging for Low Thermal Conductive and Fire-Retardant Building Material Applications

    Jakkid Sanetuntikul1, Borwon Narupai2, Nawadon Petchwattana3,*

    Journal of Renewable Materials, Vol.11, No.9, pp. 3567-3582, 2023, DOI:10.32604/jrm.2023.029308

    Abstract Wastes from polypropylene (PP) packages are accumulating every year because it is one of the most widely consumed and short lifecycle products. This paper aims to develop low thermal conductive and fire-retardant materials from post-consumer PP (pPP) packages. Ammonium polyphosphate (APP) and hollow glass microsphere (HGM) were further added to improve the fire retardancy and thermal conductivity of pPP. The influence of APP and HGM on the mechanical and thermal properties, fire retardancy and thermal conductivity of pPP were investigated and compared with that of virgin PP (vPP). HGM was constantly added at 5 wt%… More > Graphic Abstract

    A Circular Economy Use of Post-Consumer Polypropylene Packaging for Low Thermal Conductive and Fire-Retardant Building Material Applications

  • Open Access

    ARTICLE

    Effect of Freeze-Thaw Cycles on Chloride Transportation in Concrete: Prediction Model and Experiment

    Yongdong Yan*, Youdong Si, Chunhua Lu, Keke Wu

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 225-238, 2023, DOI:10.32604/sdhm.2022.022629

    Abstract This research aims to investigate the effect of frost damage on chloride transportation mechanism in ordinary and fiber concrete with both theoretical and experimental methods. The proposed theoretical model takes into account the varying damage levels caused by concrete cover depth and freeze-thaw cycles, which are the two primary parameters affecting the expression of the chloride diffusion coefficient. In the experiment, three types of concrete were prepared: ordinary Portland concrete (OPC), polypropylene fiber concrete (PFC), and steel fiber concrete (SFC). These were then immersed in NaCl solution for 120 days after undergoing 10, 25, and… More >

  • Open Access

    ARTICLE

    Effect of Polypropylene Fiber on the Unconfined Compressive Strength of Loess with Different Water Content

    Wankui Ni1, Jiaxin Zhong1,2, Haiman Wang1,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1699-1814, 2023, DOI:10.32604/jrm.2022.023805

    Abstract Fiber-reinforced soils have been of great interest to experimenters for building foundations’strength performance, time, and economy. This paper investigates the effects of water content and polypropylene fiber dosage and length on loess’s unconfined compressive strength (UCS) according to the central composite response surface design test procedure. The water content is 11%–25%, the mass ratio of fiber to soil is 0.1%–0.9%, and the fiber length ranges from 6–18 mm. The response surface method (RSM) developed full quadratic models of different variables with response values. After analysis of variance (ANOVA), the mathematical model developed in this study More > Graphic Abstract

    Effect of Polypropylene Fiber on the Unconfined Compressive Strength of Loess with Different Water Content

  • Open Access

    ARTICLE

    Effect of Active Zeolite in the Pyrolysis of Polypropylene and Low Density Polyethylene Types of Plastic Waste

    Aman Santoso1,*, Amirotus Sholikhah1, Sumari Sumari1, Muhammad Roy Asrori1, Anugrah Ricky Wijaya1, Rini Retnosari1,2, Ihsan Budi Rachman1,3

    Journal of Renewable Materials, Vol.10, No.11, pp. 2781-2789, 2022, DOI:10.32604/jrm.2022.021401

    Abstract Plastic is a basic need for humans, but it has also caused big problems for the environment. Then, the purpose of this study was to determine the effect of the type of plastic and the addition of a zeolite catalyst on the oil yield from the pyrolysis of plastic waste. The research stages were natural zeolite activation, pyrolysis reactor settings, pyrolysis of plastic waste (PP and LDPE types), and characterization. The results showed that the used natural zeolite had a mordenite phase and activated natural zeolite had a higher Si/Al ratio than the inactivated one.… More > Graphic Abstract

    Effect of Active Zeolite in the Pyrolysis of Polypropylene and Low Density Polyethylene Types of Plastic Waste

  • Open Access

    ARTICLE

    On the Engineering Properties of TPV derived from Hypalon, PP and a Compatibilizer (PMES-MA) prepared by Dynamic Vulcanization

    ASIS K. MANDAL1, DEBABRATA CHAKRABORTY2, MAHUYA DAS3, SAMIR K SIDDHANTA4,*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 21-34, 2021, DOI:10.32381/JPM.2021.38.1-2.3

    Abstract Elastomeric chlorosulfonated polyethylene (Hypalon) and thermoplastic polypropylene (PP) based thermoplastic Vulcanizates (TPVs) were prepared in presence of different doses of partial methyl ester of styrene-maleic anhydride copolymer (PMES-MA) as compatibilizer employing dynamic vulcanization technique. The mechanical analysis of the prepared TPVs exhibited significant improvements in stress at 25% modulus, ultimate tensile strength (UTS), and hardness values. FTIR studies revealed that a chemical interaction had taken place between hypalon and compatibilizer during the process of dynamic vulcanization which led to an enhancement of interfacial adhesion between them. The two-phase morphologies were clearly observed by scanning electron More >

  • Open Access

    ARTICLE

    Reinforcing Effect of Compatibilizers Containing Oxazoline Groups in Liquid Crystalline Polymer/ Polypropylene Blending Material

    SHOGO TAKASUKA1,*, TATSUHIRO TAKAHASHI1

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 1-10, 2021, DOI:10.32381/JPM.2021.38.1-2.1

    Abstract The effects of compounds containing oxazoline groups and the presence of maleic anhydridegrafted polypropylene (PP-g-MAH) on the spectral, morphological, and tensile properties of polypropylene (PP)/liquid crystalline polymer (LCP) blends were investigated. A wholly aromatic LCP having a low melting point which was copolyester, namely AL-7000 have been used, because thermal decomposition of PP and compatibilizer must be prevented.Compression molding was selected as the molding method because it allows molding with a small amount of sample. The binary blends of PP and LCP showed a degradation of tensile properties compared to pure PP. However, the addition More >

  • Open Access

    ARTICLE

    Study on the Weathering Performance of Polypropylene by Artificial Accelerated Aging and Natural Aging

    MINGYU HE1, AMATJAN SAWUT1, LI GUAN2, YING LI1, MAMATJAN YIMIT2

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 191-203, 2021, DOI:10.32381/JPM.2021.38.3-4.2

    Abstract The weathering performance of polypropylene (PP) was studied in an artificial accelerated weathering chamber of 340 nm ultraviolet light and natural conditions in Turpan, China. This work aimed to provide a method for calculating the aging failure of PP under natural conditions by the means of artificial accelerated aging. SEM showed that large crack widths of approximately 1.25 µm and 1.63 µm appealed on the PP surface after 15 days artificial accelerated aging and 150 days natural aging, respectively. XPS data revealed that the number of C-O and C=O bonds on the PP surface were More >

  • Open Access

    ARTICLE

    Experimental and Numerical Analysis of the Relationship between Pressure and Drip Rate in a Vertical Polypropylene Infusion Bag

    Weiwei Duan*, Lingfeng Tang

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1143-1164, 2021, DOI:10.32604/fdmp.2021.016692

    Abstract Vertical infusion (self-emptying) bags used for Intravenous infusion are typically obtained by moulding a soft envelope of polypropylene. In normal conditions a continuous flow of liquid can be obtained with no need to use a pump. In the present study, the relationship between air pressure effects and the drug drip rate have been investigated experimentally and numerically. After determining relevant experimental data about the descending height of liquid level, the dropping speed and pressure, the ordinary least square method and MATLAB have been used to reconstruct the related variation and interrelation laws. Numerical simulations have More >

  • Open Access

    ARTICLE

    Improving the Unconfined Compressive Strength of Red Clay by Combining Biopolymers with Fibers

    Zhiyu Weng1, Lina Wang1,2,*, Qiang Liu2, Xuemin Pan1, Yonghao Xu3, Jing Li1

    Journal of Renewable Materials, Vol.9, No.8, pp. 1503-1517, 2021, DOI:10.32604/jrm.2021.015003

    Abstract To explore an environmentally friendly improvement measure for red clay, the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfined compressive strength and scanning electron microscopy tests. The test results demonstrated that the contents and curing ages of xanthan gum had significant influences on the unconfined compressive strength of red clay. Compared with untreated soil, 1.5% xanthan gum content was the optimal ratio in which the strength increment was between 41.52 kPa and 64.73 kPa. On the other hand, the strength of xanthan… More >

Displaying 1-10 on page 1 of 19. Per Page