Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access


    IoT with Evolutionary Algorithm Based Deep Learning for Smart Irrigation System

    P. Suresh1,*, R. H. Aswathy1, Sridevi Arumugam2, Amani Abdulrahman Albraikan3, Fahd N. Al-Wesabi4, Anwer Mustafa Hilal5, Mohammad Alamgeer6

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1713-1728, 2022, DOI:10.32604/cmc.2022.021789

    Abstract In India, water wastage in agricultural fields becomes a challenging issue and it is needed to minimize the loss of water in the irrigation process. Since the conventional irrigation system needs massive quantity of water utilization, a smart irrigation system can be designed with the help of recent technologies such as machine learning (ML) and the Internet of Things (IoT). With this motivation, this paper designs a novel IoT enabled deep learning enabled smart irrigation system (IoTDL-SIS) technique. The goal of the IoTDL-SIS technique focuses on the design of smart irrigation techniques for effectual water… More >

  • Open Access


    Artificial Intelligence Enabled Apple Leaf Disease Classification for Precision Agriculture

    Fahd N. Al-Wesabi1,2,*, Amani Abdulrahman Albraikan3, Anwer Mustafa Hilal4, Majdy M. Eltahir1, Manar Ahmed Hamza4, Abu Sarwar Zamani4

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6223-6238, 2022, DOI:10.32604/cmc.2022.021299

    Abstract Precision agriculture enables the recent technological advancements in farming sector to observe, measure, and analyze the requirements of individual fields and crops. The recent developments of computer vision and artificial intelligence (AI) techniques find a way for effective detection of plants, diseases, weeds, pests, etc. On the other hand, the detection of plant diseases, particularly apple leaf diseases using AI techniques can improve productivity and reduce crop loss. Besides, earlier and precise apple leaf disease detection can minimize the spread of the disease. Earlier works make use of traditional image processing techniques which cannot assure… More >

  • Open Access


    Intelligent IoT-Aided Early Sound Detection of Red Palm Weevils

    Mohamed Esmail Karar1,2, Omar Reyad1,3,*, Abdel-Haleem Abdel-Aty4, Saud Owyed5, Mohd F. Hassan6

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 4095-4111, 2021, DOI:10.32604/cmc.2021.019059

    Abstract Smart precision agriculture utilizes modern information and wireless communication technologies to achieve challenging agricultural processes. Therefore, Internet of Things (IoT) technology can be applied to monitor and detect harmful insect pests such as red palm weevils (RPWs) in the farms of date palm trees. In this paper, we propose a new IoT-based framework for early sound detection of RPWs using fine-tuned transfer learning classifier, namely InceptionResNet-V2. The sound sensors, namely TreeVibes devices are carefully mounted on each palm trunk to setup wireless sensor networks in the farm. Palm trees are labeled based on the sensor… More >

  • Open Access


    Application of Low Cost Integrated Navigation System in Precision Agriculture

    Qi Wang1,2,3,*, Changsong Yang2,3,5, Yuxiang Wang1,2,3, Shao-en Wu4

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1433-1442, 2020, DOI:10.32604/iasc.2020.012759

    Abstract To improve the positioning accuracy of farming vehicle in precision agriculture, an integrated positioning system is proposed based on Global Navigation Satellite System (GNSS)/Strapdown Inertial Navigation System (SINS)/Wireless Sensor Networks (WSN) with low cost and high reliability. The principles of commonly used localization technologies in vehicle positioning are compared and the Received Signal Strength Indication (RSSI) based measurement method is chosen as the integrated positioning system for information fusion considering the complexity of the algorithm, positioning accuracy and hardware requirements in the application scenario. The research of wireless signal propagation loss model of farmland environment More >

  • Open Access


    Deep Learning-Based Classification of Fruit Diseases: An Application for Precision Agriculture

    Inzamam Mashood Nasir1, Asima Bibi2, Jamal Hussain Shah2, Muhammad Attique Khan1, Muhammad Sharif2, Khalid Iqbal3, Yunyoung Nam4, Seifedine Kadry5,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1949-1962, 2021, DOI:10.32604/cmc.2020.012945

    Abstract Agriculture is essential for the economy and plant disease must be minimized. Early recognition of problems is important, but the manual inspection is slow, error-prone, and has high manpower and time requirements. Artificial intelligence can be used to extract fruit color, shape, or texture data, thus aiding the detection of infections. Recently, the convolutional neural network (CNN) techniques show a massive success for image classification tasks. CNN extracts more detailed features and can work efficiently with large datasets. In this work, we used a combined deep neural network and contour feature-based approach to classify fruits… More >

Displaying 11-20 on page 2 of 15. Per Page