Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Printed Circuit Board (PCB) Surface Micro Defect Detection Model Based on Residual Network with Novel Attention Mechanism

    Xinyu Hu, Defeng Kong*, Xiyang Liu, Junwei Zhang, Daode Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 915-933, 2024, DOI:10.32604/cmc.2023.046376

    Abstract Printed Circuit Board (PCB) surface tiny defect detection is a difficult task in the integrated circuit industry, especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks. To improve the performance of PCB surface tiny defects detection, a PCB tiny defects detection model based on an improved attention residual network (YOLOX-AttResNet) is proposed. First, the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet (Squeeze and Excitation Network) attention network; then the improved K-means-SENet… More >

  • Open Access

    ARTICLE

    Detection Algorithm of Surface Defect Word on Printed Circuit Board

    Min Zhang*, Haixu Xi

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3911-3923, 2023, DOI:10.32604/csse.2023.036709

    Abstract For Printed Circuit Board (PCB) surface defect detection, traditional detection methods mostly focus on template matching-based reference method and manual detections, which have the disadvantages of low defect detection efficiency, large errors in defect identification and localization, and low versatility of detection methods. In order to further meet the requirements of high detection accuracy, real-time and interactivity required by the PCB industry in actual production life. In the current work, we improve the You-only-look-once (YOLOv4) defect detection method to train and detect six types of PCB small target defects. Firstly, the original Cross Stage Partial Darknet53 (CSPDarknet53) backbone network is… More >

  • Open Access

    ARTICLE

    Algorithmic Scheme for Concurrent Detection and Classification of Printed Circuit Board Defects

    Jakkrit Onshaunjit, Jakkree Srinonchat*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 355-367, 2022, DOI:10.32604/cmc.2022.017698

    Abstract An ideal printed circuit board (PCB) defect inspection system can detect defects and classify PCB defect types. Existing defect inspection technologies can identify defects but fail to classify all PCB defect types. This research thus proposes an algorithmic scheme that can detect and categorize all 14-known PCB defect types. In the proposed algorithmic scheme, fuzzy c-means clustering is used for image segmentation via image subtraction prior to defect detection. Arithmetic and logic operations, the circle hough transform (CHT), morphological reconstruction (MR), and connected component labeling (CCL) are used in defect classification. The algorithmic scheme achieves 100% defect detection and 99.05%… More >

  • Open Access

    ARTICLE

    Defect Detection in Printed Circuit Boards with Pre-Trained Feature Extraction Methodology with Convolution Neural Networks

    Mohammed A. Alghassab*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 637-652, 2022, DOI:10.32604/cmc.2022.019527

    Abstract Printed Circuit Boards (PCBs) are very important for proper functioning of any electronic device. PCBs are installed in almost all the electronic device and their functionality is dependent on the perfection of PCBs. If PCBs do not function properly then the whole electric machine might fail. So, keeping this in mind researchers are working in this field to develop error free PCBs. Initially these PCBs were examined by the human beings manually, but the human error did not give good results as sometime defected PCBs were categorized as non-defective. So, researchers and experts transformed this manual traditional examination to automated… More >

  • Open Access

    ARTICLE

    Stress Analysis of Printed Circuit Board with Different Thickness and Composite Materials Under Shock Loading

    Kuan-Ting Liu1, Chun-Lin Lu1, Nyan-Hwa Tai2, Meng-Kao Yeh1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 661-674, 2020, DOI:10.32604/cmes.2020.07792

    Abstract In this study, the deformation and stress distribution of printed circuit board (PCB) with different thickness and composite materials under a shock loading were analyzed by the finite element analysis. The standard 8-layer PCB subjected to a shock loading 1500 g was evaluated first. Moreover, the finite element models of the PCB with different thickness by stacking various number of layers were discussed. In addition to changing thickness, the core material of PCB was replaced from woven E-glass/epoxy to woven carbon fiber/epoxy for structural enhancement. The non-linear material property of copper foil was considered in the analysis. The results indicated… More >

Displaying 1-10 on page 1 of 5. Per Page