Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (164)
  • Open Access


    Role of Shear Stress Direction in Endothelial Mechanotransduction

    Shu Chien*

    Molecular & Cellular Biomechanics, Vol.5, No.1, pp. 1-8, 2008, DOI:10.3970/mcb.2008.005.001

    Abstract Fluid shear stress due to blood flow can modulate functions of endothelial cells (ECs) in blood vessels by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a definite forward direction causes transient activations of many genes that are atherogenic, followed by their down-regulation; laminar shear stress also up-regulates genes that inhibit EC growth. In contrast, disturbed flow patterns with little forward direction cause sustained activations of these atherogenic genes and enhancements of EC mitosis and apoptosis. In straight parts of the arterial tree, laminar shear stress with a definite forward More >

  • Open Access


    Regulation of Cyclic Longitudinal Mechanical Stretch on Proliferation of Human Bone Marrow Mesenchymal Stem Cells

    Guanbin Song∗,†,‡, Yang Ju∗,†,§, Hitoshi Soyama*, Toshiro Ohashi, Masaaki Sato

    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 201-210, 2007, DOI:10.3970/mcb.2007.004.201

    Abstract Mechanical stimulation is critical to both physiological and pathological states of living cells. Although a great deal of research has been done on biological and biochemical regulation of the behavior of bone marrow mesenchymal stem cells (MSCs), the influence of biomechanical factors on their behavior is still not fully documented. In this study, we investigated the modulation of mechanical stretch magnitude, frequency, and duration on the human marrow mesenchymal stem cells (hMSCs) proliferation by an in vitro model system using a mechanical stretch loading apparatus, and optimized the stretch regime for the proliferation of hMSCs.… More >

  • Open Access


    Airway Smooth Muscle Proliferation and Mechanics: Effects of AMP Kinase Agonists

    Anat Ratnovsky∗,†, Matthew Mellema*, Steven S. An∗,‡, Jeffrey J. Fredberg*, Stephanie A. Shore*

    Molecular & Cellular Biomechanics, Vol.4, No.3, pp. 143-158, 2007, DOI:10.3970/mcb.2007.004.143

    Abstract Obesity is a risk factor for asthma. The purpose of this study was to determine whether metformin, an agent used in the treatment of an obesity-related condition (type II diabetes), might have therapeutic potential for modifying the effects of obesity on airway smooth muscle (ASM) function. Metformin acts via activation of AMP-activated protein kinase (AMPK), a cellular sensor of energy status. In cultured murine ASM cells, metformin (0.2--2 mM) caused a dose-dependent inhibition of cell proliferation induced by PDGF (10-8 M) and serotonin (10-4 M). Another AMPK activator, 5-aminoimidazole-4-carboxamide-1-ß-D-riboruranoside (AICAR), also inhibited PDGF-induced proliferation. Furthermore, cells More >

  • Open Access


    Geometrical Modeling of Cell Division and Cell Remodeling Based on Voronoi Tessellation Method

    Liqiang Lin1, Xianqiao Wang2, Xiaowei Zeng1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 203-220, 2014, DOI:10.3970/cmes.2014.098.203

    Abstract The Voronoi tessellation is employed to describe cellular patterns and to simulate cell division and cell remodeling in epithelial tissue. First, Halton sequence is utilized to generate the random generators of Voronoi cell points. The centroidal Voronoi cell center is obtained by probabilistic Lloyd's method and polygonal structure of cell distribution is modeled. Based on the polygonal shape of cells, the instantaneous mechanism of cell division is applied to simulate the cell proliferation and remodeling. Four kinds of single-cell division algorithms are designed with the consideration of cleavage angle. From these simulations, we find that… More >

Displaying 161-170 on page 17 of 164. Per Page