Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (378)
  • Open Access

    ARTICLE

    Knockdown of HPIP Inhibits the Proliferation and Invasion of Head-and-Neck Squamous Cell Carcinoma Cells by Regulating PI3K/Akt Signaling Pathway

    Yangjing Chen, Ruimin Zhao, Qian Zhao, Yuan Shao, Shaoqiang Zhang

    Oncology Research, Vol.24, No.3, pp. 153-160, 2016, DOI:10.3727/096504016X14612603423476

    Abstract Hematopoietic pre-B-cell leukemia transcription factor (PBX)-interacting protein (HPIP/PBXIP1) is a corepressor for the transcription factor PBX. Previous studies showed that HPIP is frequently overexpressed in many tumors. However, the role of HPIP in head-and-neck squamous cell carcinoma (HNSCC) has not yet been determined. Thus, we decided to investigate the effects and mechanisms of HPIP in HNSCC. Our results demonstrated that HPIP is highly expressed in human HNSCC cell lines and provides the first evidence that knockdown of HPIP obviously inhibits proliferation and migration/invasion in HNSCC cells in vitro, as well as inhibits tumor growth in More >

  • Open Access

    ARTICLE

    MicroRNA-15a Inhibits Proliferation and Induces Apoptosis in CNE1 Nasopharyngeal Carcinoma Cells

    Kang Zhu*, Ying He, Cui Xia*, Jing Yan*, Jin Hou*, Demin Kong*, Yeye Yang*, Guoxi Zheng*

    Oncology Research, Vol.24, No.3, pp. 145-151, 2016, DOI:10.3727/096504016X14611963142290

    Abstract Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer, frequently occurring in Southeast Asia and Southern China. Several microRNAs (miRNAs) have been shown to have an inhibitive effect on NPC, while the effect of miR-15a on NPC remains unclear. Thus, our study aimed to investigate the potential effect of miR-15a on NPC cell proliferation, apoptosis, and possible functional mechanism. Human NPC CNE1 cells were transfected with miR-15a mimics, miR-15a inhibitors, or a control. Afterward, cell viability and apoptosis were assayed by using CCK-8, BrdU assay, and flow cytometry. Moreover, Western blot was used to detect the… More >

  • Open Access

    ARTICLE

    Knockdown of PFTAIRE Protein Kinase 1 (PFTK1) Inhibits Proliferation, Invasion, and EMT in Colon Cancer Cells

    Jiankang Zhu, Chongzhong Liu, Fengyue Liu, Yadong Wang, Min Zhu

    Oncology Research, Vol.24, No.3, pp. 137-144, 2016, DOI:10.3727/096504016X14611963142218

    Abstract PFTK1 is a member of the cyclin-dependent kinase (CDK) family and is upregulated in many types of tumors. However, its expression and role in colon cancer remain unclear. In this study, we aimed to investigate the expression and function of PFTK1 in colon cancer. Our results showed that PFTK1 was highly expressed in colon cancer cell lines. The in vitro experiments demonstrated that knockdown of PFTK1 inhibited the proliferation, migration, and invasion of colon cancer cells as well as the epithelial-to-mesenchymal transition (EMT) progress. Furthermore, knockdown of PFTK1 suppressed the expression of Shh as well More >

  • Open Access

    ARTICLE

    miR-1193 Suppresses the Proliferation and Invasion of Human T-Cell Leukemia Cells Through Directly Targeting the Transmembrane 9 Superfamily 3 (TM9SF3)

    Liyun Shen, Xingjun Du, Hongyan Ma, Shunxi Mei

    Oncology Research, Vol.25, No.9, pp. 1643-1651, 2017, DOI:10.3727/096504017X14908284471361

    Abstract miRNAs have been involved in various types of cancer, including T-cell leukemia. In this study, the role of miR-1193 in the proliferation and invasion of T-cell leukemia cells was explored. First, we found that miR-1193 was sharply downregulated in T-cell leukemia cells when compared with normal T cells. miR-1193 markedly decreased the proliferation and invasion in Jurkat human T-cell leukemia cells. Transmembrane 9 superfamily 3 (TM9SF3) was then predicted to be a potential target gene of miR-1193, the levels of which displayed a strongly negative correlation with miR-1193 levels in T-cell leukemia patients. We confirmed More >

  • Open Access

    ARTICLE

    YEATS Domain Containing 4 Promotes Gastric Cancer Cell Proliferation and Mediates Tumor Progression via Activating the Wnt/β-Catenin Signaling Pathway

    Sheqing Ji*, Youxiang Zhang, Binhai Yang

    Oncology Research, Vol.25, No.9, pp. 1633-1641, 2017, DOI:10.3727/096504017X14878528144150

    Abstract Increased expression of YEATS domain containing 4 (YEATS4) has been reported to have a correlation with progression in many types of cancer. However, the mechanism by which it promotes the development of gastric cancer (GC) is rarely reported. This study aimed to investigate the effect of YEATS4 on cell proliferation and tumor progression. The mRNA and protein expressions of YEATS4 in GC tissues and cell lines were analyzed. BGC-823 cells then overexpressed or silenced YEATS4 by transfection of different plasmids. The regulatory effect of YEATS on cell viability, colony formation, cell apoptosis, and tumor growth… More >

  • Open Access

    ARTICLE

    LINC00052 Promotes Gastric Cancer Cell Proliferation and Metastasis via Activating the Wnt/β-Catenin Signaling Pathway

    Yuqiang Shan1, Rongchao Ying1, Zhong Jia, Wencheng Kong, Yi Wu, Sixin Zheng, Huicheng Jin

    Oncology Research, Vol.25, No.9, pp. 1589-1599, 2017, DOI:10.3727/096504017X14897896412027

    Abstract Gastric cancer (GC) is one of the most common malignant tumors of the digestive system. The etiology of GC is complex, and much more attention should be paid to genetic factors. In this study, we explored the role and function of LINC00052 in GC. We applied qRT-PCR and Northern blot to detect the expression of LINC00052 and found it was highly expressed during GC. We also investigated the effects of LINC00052 on tumor prognosis and progression and found that LINC00052 indicated poor prognosis and tumor progression. By performing MTT, colony formation, and Transwell assays, we… More >

  • Open Access

    ARTICLE

    Knockdown of E2F3 Inhibits Proliferation, Migration, and Invasion and Increases Apoptosis in Glioma Cells

    Zhi-Gang Shen*1, Xiao-Zhou Liu†1, Chang-Xiu Chen, Jing-Min Lu§

    Oncology Research, Vol.25, No.9, pp. 1555-1566, 2017, DOI:10.3727/096504017X14897158009178

    Abstract E2F3a, as a member of the E2F family, is essential for cell division associated with the progression of many cancers. However, the biological effect of E2F3a on glioma is not understood as well. To investigate the functional mechanism of E2F3a in glioma, we examined the expression of E2F3a in glioma tissue and cell lines. We found that E2F3a was upregulated in glioma tissue compared with adjacent tissue, and this was associated with a poor survival rate. E2F3a was highly expressed in glioma cell lines compared with normal HEB cell lines. Knockdown of E2F3a significantly inhibited… More >

  • Open Access

    ARTICLE

    FOXO1–MALAT1–miR-26a-5p Feedback Loop Mediates Proliferation and Migration in Osteosarcoma Cells

    Juntao Wang, Guodong Sun

    Oncology Research, Vol.25, No.9, pp. 1517-1527, 2017, DOI:10.3727/096504017X14859934460780

    Abstract miR-26a has been found to be downregulated in osteosarcoma (OS) when compared with normal control tissues and has been shown to suppress the malignant behaviors of OS cells. The underlying mechanism, nevertheless, remains unknown. In our study, the long noncoding RNA MALAT1, confirmed to be significantly upregulated in OS, is first shown to be capable of promoting proliferation and migration by directly suppressing miR-26a-5p in OS cells. In addition, we have identified forkhead box O1 (FOXO1) as a transcriptional factor of MALAT1 that can negatively regulate MALAT1. We have shown that MALAT1 promoted growth and More >

  • Open Access

    ARTICLE

    MicroRNA-342-3p Inhibits the Proliferation, Migration, and Invasion of Osteosarcoma Cells by Targeting Astrocyte-Elevated Gene-1 (AEG-1)

    Shaokun Zhang*, Lidi Liu*, Zhenshan Lv*, Qiao Li*, Weiquan Gong*, Hong Wu

    Oncology Research, Vol.25, No.9, pp. 1505-1515, 2017, DOI:10.3727/096504017X14886485417426

    Abstract Recent studies suggest that microRNAs (miRNAs) are critical regulators in many types of cancer, including osteosarcoma. miR-342-3p has emerged as an important cancer-related miRNA in several types of cancers. However, the functional significance of miR-342-3p in osteosarcoma is unknown. The aims of this study were to investigate whether miR-342-3p is dysregulated in osteosarcoma and to explore the biological function of miR-342-3p in regulating cellular processes of osteosarcoma cells. We found that miR-342-3p expression was significantly decreased in osteosarcoma tissues and cell lines. Overexpression of miR-342-3p inhibits the proliferation, migration, and invasion of osteosarcoma cells. In… More >

  • Open Access

    ARTICLE

    Overexpression of T-box Transcription Factor 5 (TBX5) Inhibits Proliferation and Invasion in Non-Small Cell Lung Carcinoma Cells

    Ruoting Ma*†, Yu Yang*, Qiuyun Tu, Ke Hu

    Oncology Research, Vol.25, No.9, pp. 1495-1504, 2017, DOI:10.3727/096504017X14883287513729

    Abstract T-box transcription factor 5 (TBX5), a member of the conserved T-box transcription factor family that functions in organogenesis and embryogenesis, has recently been identified as a critical player in cancer development. The aim of this study was to determine the role of TBX5 in non-small cell lung carcinoma (NSCLC). Immunohistochemistry was used to detect the correlation between levels of TBX5 and clinicopathological features of NSCLC patients in tissue microarray. Expression of TBX5 in NSCLC tissues and cell lines was evaluated by quantitative PCR and Western blot. The role of TBX5 in regulating proliferation, colony formation,… More >

Displaying 31-40 on page 4 of 378. Per Page