Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access

    ARTICLE

    MPDP: A Probabilistic Architecture for Microservice Performance Diagnosis and Prediction

    Talal H. Noor*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1273-1299, 2024, DOI:10.32604/csse.2024.052510 - 13 September 2024

    Abstract In recent years, container-based cloud virtualization solutions have emerged to mitigate the performance gap between non-virtualized and virtualized physical resources. However, there is a noticeable absence of techniques for predicting microservice performance in current research, which impacts cloud service users’ ability to determine when to provision or de-provision microservices. Predicting microservice performance poses challenges due to overheads associated with actions such as variations in processing time caused by resource contention, which potentially leads to user confusion. In this paper, we propose, develop, and validate a probabilistic architecture named Microservice Performance Diagnosis and Prediction (MPDP). MPDP… More >

  • Open Access

    REVIEW

    Systematic Review: Load Balancing in Cloud Computing by Using Metaheuristic Based Dynamic Algorithms

    Darakhshan Syed*, Ghulam Muhammad, Safdar Rizvi

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 437-476, 2024, DOI:10.32604/iasc.2024.050681 - 11 July 2024

    Abstract Cloud Computing has the ability to provide on-demand access to a shared resource pool. It has completely changed the way businesses are managed, implement applications, and provide services. The rise in popularity has led to a significant increase in the user demand for services. However, in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization. This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms. Specifically, metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic. More >

  • Open Access

    ARTICLE

    CoopAI-Route: DRL Empowered Multi-Agent Cooperative System for Efficient QoS-Aware Routing for Network Slicing in Multi-Domain SDN

    Meignanamoorthi Dhandapani*, V. Vetriselvi, R. Aishwarya

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2449-2486, 2024, DOI:10.32604/cmes.2024.050986 - 08 July 2024

    Abstract The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale. Network slicing is crucial in delivering services for different, demanding vertical applications in this context. Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations. However, the existing IP (Internet Protocol) over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators. Conventional inter-domain routing methods, like Border Gateway Protocol (BGP), cannot make routing decisions based on performance,… More >

  • Open Access

    ARTICLE

    QoS Routing Optimization Based on Deep Reinforcement Learning in SDN

    Yu Song1, Xusheng Qian2, Nan Zhang3, Wei Wang2, Ao Xiong1,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3007-3021, 2024, DOI:10.32604/cmc.2024.051217 - 15 May 2024

    Abstract To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront the challenge of managing the surging demand for data traffic. Within this realm, the network imposes stringent Quality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanisms in accommodating such extensive data flows. In response to the imperative of handling a substantial influx of data requests promptly and alleviating the constraints of existing technologies and network congestion, we present an architecture for QoS routing optimization with in Software Defined Network (SDN), leveraging deep reinforcement learning. This… More >

  • Open Access

    ARTICLE

    Dynamic Routing of Multiple QoS-Required Flows in Cloud-Edge Autonomous Multi-Domain Data Center Networks

    Shiyan Zhang1,*, Ruohan Xu2, Zhangbo Xu3, Cenhua Yu1, Yuyang Jiang1, Yuting Zhao4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2287-2308, 2024, DOI:10.32604/cmc.2023.046550 - 27 February 2024

    Abstract The 6th generation mobile networks (6G) network is a kind of multi-network interconnection and multi-scenario coexistence network, where multiple network domains break the original fixed boundaries to form connections and convergence. In this paper, with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness, this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration. Due to the conflict between the utility of different flows, the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward… More >

  • Open Access

    ARTICLE

    New Antenna Array Beamforming Techniques Based on Hybrid Convolution/Genetic Algorithm for 5G and Beyond Communications

    Shimaa M. Amer1, Ashraf A. M. Khalaf2, Amr H. Hussein3,4, Salman A. Alqahtani5, Mostafa H. Dahshan6, Hossam M. Kassem3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2749-2767, 2024, DOI:10.32604/cmes.2023.029138 - 15 December 2023

    Abstract Side lobe level reduction (SLL) of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service (QOS) in recent and future wireless communication systems starting from 5G up to 7G. Furthermore, it improves the array gain and directivity, increasing the detection range and angular resolution of radar systems. This study proposes two highly efficient SLL reduction techniques. These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm (GA) to develop the Conv/GA and DConv/GA, respectively. The convolution process determines the element’s… More >

  • Open Access

    ARTICLE

    Real-Time Multi Fractal Trust Evaluation Model for Efficient Intrusion Detection in Cloud

    S. Priya1, R. S. Ponmagal2,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1895-1907, 2023, DOI:10.32604/iasc.2023.039814 - 21 June 2023

    Abstract Handling service access in a cloud environment has been identified as a critical challenge in the modern internet world due to the increased rate of intrusion attacks. To address such threats towards cloud services, numerous techniques exist that mitigate the service threats according to different metrics. The rule-based approaches are unsuitable for new threats, whereas trust-based systems estimate trust value based on behavior, flow, and other features. However, the methods suffer from mitigating intrusion attacks at a higher rate. This article presents a novel Multi Fractal Trust Evaluation Model (MFTEM) to overcome these deficiencies. The… More >

  • Open Access

    ARTICLE

    QoS-Aware Cloud Service Optimization Algorithm in Cloud Manufacturing Environment

    Wenlong Ma1,2,*, Youhong Xu1, Jianwei Zheng2, Sadaqat ur Rehman3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1499-1512, 2023, DOI:10.32604/iasc.2023.030484 - 21 June 2023

    Abstract In a cloud manufacturing environment with abundant functionally equivalent cloud services, users naturally desire the highest-quality service(s). Thus, a comprehensive measurement of quality of service (QoS) is needed. Optimizing the plethora of cloud services has thus become a top priority. Cloud service optimization is negatively affected by untrusted QoS data, which are inevitably provided by some users. To resolve these problems, this paper proposes a QoS-aware cloud service optimization model and establishes QoS-information awareness and quantification mechanisms. Untrusted data are assessed by an information correction method. The weights discovered by the variable precision Rough Set, More >

  • Open Access

    ARTICLE

    Survey of Resources Allocation Techniques with a Quality of Service (QoS) Aware in a Fog Computing Environment

    Wan Norsyafizan W. Muhamad1, Kaharudin Dimyati2, Muhammad Awais Javed3, Suzi Seroja Sarnin1,*, Divine Senanu Ametefe1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1291-1308, 2023, DOI:10.32604/cmc.2023.037214 - 08 June 2023

    Abstract The tremendous advancement in distributed computing and Internet of Things (IoT) applications has resulted in the adoption of fog computing as today’s widely used framework complementing cloud computing. Thus, suitable and effective applications could be performed to satisfy the applications’ latency requirement. Resource allocation techniques are essential aspects of fog networks which prevent unbalanced load distribution. Effective resource management techniques can improve the quality of service metrics. Due to the limited and heterogeneous resources available within the fog infrastructure, the fog layer’s resources need to be optimised to efficiently manage and distribute them to different… More >

  • Open Access

    ARTICLE

    Hybrid Chameleon and Honey Badger Optimization Algorithm for QoS-Based Cloud Service Composition Problem

    G. Manimala*, A. Chinnasamy

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 393-412, 2023, DOI:10.32604/csse.2023.037066 - 26 May 2023

    Abstract Cloud computing facilitates the great potentiality of storing and managing remote access to services in terms of software as a service (SaaS). Several organizations have moved towards outsourcing over the cloud to reduce the burden on local resources. In this context, the metaheuristic optimization method is determined to be highly suitable for selecting appropriate services that comply with the requirements of the client’s requests, as the services stored over the cloud are too complex and scalable. To achieve better service composition, the parameters of Quality of Service (QoS) related to each service considered to be… More >

Displaying 1-10 on page 1 of 59. Per Page