Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    An Investigation into the Compressive Strength, Permeability and Microstructure of Quartzite-Rock-Sand Mortar

    Wei Chen*, Wuwen Liu, Yue Liang

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 859-872, 2024, DOI:10.32604/fdmp.2023.029310

    Abstract River sand is an essential component used as a fine aggregate in mortar and concrete. Due to unrestrained exploitation, river sand resources are gradually being exhausted. This requires alternative solutions. This study deals with the properties of cement mortar containing different levels of manufactured sand (MS) based on quartzite, used to replace river sand. The river sand was replaced at 20%, 40%, 60% and 80% with MS (by weight or volume). The mechanical properties, transfer properties, and microstructure were examined and compared to a control group to study the impact of the replacement level. The results indicate that the compressive… More >

  • Open Access

    ARTICLE

    Metric-Based Resolvability of Quartz Structure

    Muhammad Imran1,*, Ali Ahmad2, Muhammad Azeem3, Kashif Elahi4

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 2053-2071, 2022, DOI:10.32604/cmc.2022.022064

    Abstract Silica has three major varieties of crystalline. Quartz is the main and abundant ingredient in the crust of our earth. While other varieties are formed by the heating of quartz. Silica quartz is a rich chemical structure containing enormous properties. Any chemical network or structure can be transformed into a graph, where atoms become vertices and the bonds are converted to edges, between vertices. This makes a complex network easy to visualize to work on it. There are many concepts to work on chemical structures in terms of graph theory but the resolvability parameters of a graph are quite advance… More >

  • Open Access

    ARTICLE

    Adsorption Behavior of Reducing End-Modified Cellulose Nanocrystals: A Kinetic Study Using Quartz Crystal Microbalance

    Maud Chemin, Céline Moreau, Bernard Cathala, Ana Villares*

    Journal of Renewable Materials, Vol.8, No.1, pp. 29-43, 2020, DOI:10.32604/jrm.2020.07850

    Abstract In this work, we studied the adsorption of modified cellulose nanocrystals onto solid surfaces by quartz crystal microbalance with dissipation monitoring (QCM-D). Cellulose nanocrystals obtained from tunicate (CNC) were modified at reducing end by amidation reactions. Two different functionalities were investigated: a polyamine dendrimer (CNC-NH2), which interacts with gold surface by the amine groups; and a biotin moiety (CNC-Biot), which has a strong affinity for the protein streptavidin (SAV). QCM-D results revealed different adsorption behaviors between modified and unmodified CNCs. Hence, unmodified CNCs covered almost all the surface forming a rigid and flat layer whereas reducing end modified CNCs remained… More >

  • Open Access

    ABSTRACT

    The Calculation of Electrical Properties of Quartz Crystal Resonators with Parallel Finite Element Analysis Based on the Mindlin Plate Theory

    Ji Wang, Yangyang Chen, Guijia Chen, Jianke Du

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.3, pp. 89-90, 2011, DOI:10.3970/icces.2011.017.089

    Abstract The finite element analysis of quartz crystal resonators is increasingly important due to the precise design requirements in frequency and electrical properties with the consideration of crystal blank, processing, mounting, and packaging. To reduce the computational cost, one proven approach is to use the Mindlin plate theory for the thickness-shear vibrations of crystal plates with electrodes and other complications. This approach has been implemented in parallel finite element method with the sophisticated software components for the solutions of linear systems in terms such as eigenvalues, mode shapes, and amplitudes, which in turn can be used for the evaluation of certain… More >

  • Open Access

    ABSTRACT

    Immunoassay of Human Immunoglobulin Using Quartz Crystal Microbalance

    Sheng D. Chao

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.2, pp. 33-34, 2011, DOI:10.3970/icces.2011.017.033

    Abstract We performed an immunoassay analysis using the Quartz Crystal Microbalance (QCM) biosensor to detect the specific binding reaction of the (Human IgG1)-(Anti-Human IgG1) protein pair. Both experimental and computational were used to study biomolecular binding reactions in microfluidic channels. We discussed the unsteady convective diffusion in the transportation tube and found that the distribution of the analyte concentration in the tube is strongly affected by the flow field. Due to this, large discrepancies between the simulations and experimental results were observed. We show that the conventional assumption of the uniform and steady analyte concentration used in the computational procedure is… More >

Displaying 1-10 on page 1 of 5. Per Page