Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (95)
  • Open Access

    ARTICLE

    Cognitive NFIDC-FRBFNN Control Architecture for Robust Path Tracking of Mobile Service Robots in Hospital Settings

    Huda Talib Najm1,2, Ahmed Sabah Al-Araji3, Nur Syazreen Ahmad1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071837 - 29 January 2026

    Abstract Mobile service robots (MSRs) in hospital environments require precise and robust trajectory tracking to ensure reliable operation under dynamic conditions, including model uncertainties and external disturbances. This study presents a cognitive control strategy that integrates a Numerical Feedforward Inverse Dynamic Controller (NFIDC) with a Feedback Radial Basis Function Neural Network (FRBFNN). The robot’s mechanical structure was designed in SolidWorks 2022 SP2.0 and validated under operational loads using finite element analysis in ANSYS 2022 R1. The NFIDC-FRBFNN framework merges proactive inverse dynamic compensation with adaptive neural learning to achieve smooth torque responses and accurate motion control.… More >

  • Open Access

    ARTICLE

    Machine Learning Based Uncertain Free Vibration Analysis of Hybrid Composite Plates

    Bindi Saurabh Thakkar1, Pradeep Kumar Karsh2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-22, 2026, DOI:10.32604/cmc.2025.072839 - 09 December 2025

    Abstract This study investigates the uncertain dynamic characterization of hybrid composite plates by employing advanced machine-assisted finite element methodologies. Hybrid composites, widely used in aerospace, automotive, and structural applications, often face variability in material properties, geometric configurations, and manufacturing processes, leading to uncertainty in their dynamic response. To address this, three surrogate-based machine learning approaches like radial basis function (RBF), multivariate adaptive regression splines (MARS), and polynomial neural networks (PNN) are integrated with a finite element framework to efficiently capture the stochastic behavior of these plates. The research focuses on predicting the first three natural frequencies… More >

  • Open Access

    ARTICLE

    IoT Based Transmission Line Fault Classification Using Regularized RBF-ELM and Virtual PMU in a Smart Grid

    Kunjabihari Swain1, Murthy Cherukuri1,*, Indu Sekhar Samanta2, Bhargav Appasani3,*, Nicu Bizon4,5, Mihai Oproescu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1993-2015, 2025, DOI:10.32604/cmes.2025.067121 - 26 November 2025

    Abstract Transmission line faults pose a significant threat to power system resilience, underscoring the need for accurate and rapid fault identification to facilitate proper resource monitoring, economic loss prevention, and blackout avoidance. Extreme learning machine (ELM) offers a compelling solution for rapid classification, achieving network training in a single epoch. Leveraging the Internet of Things (IoT) and the virtual instrumentation capabilities of LabVIEW, ELM can enable the swift and precise identification of transmission line faults. This paper presents a regularized radial basis function (RBF) ELM-based fault detection and classification system for transmission lines, utilizing a LabVIEW More >

  • Open Access

    ARTICLE

    Prediction of Landslide Displacement Using a BiLSTM-RBF Model Based on a Hybrid Attention Mechanism

    Jiao Chen1, Xiao Wang1,*, Zhiqin He1, Yi Chen2, Chao Ma1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5423-5450, 2025, DOI:10.32604/cmc.2025.067952 - 23 October 2025

    Abstract This research proposes an innovative solution to the inherent challenges faced by landslide displacement prediction models based on data-driven methods, such as the need for extensive historical datasets for training, the reliance on manual feature selection, and the difficulty in effectively utilizing landslide historical data. We have developed a dual-channel deep learning prediction model that integrates multimodal decomposition and an attention mechanism to overcome these challenges and improve prediction performance. The proposed methodology follows a three-stage framework: (1) Empirical Mode Decomposition (EMD) effectively segregates cumulative displacement and feature factors; (2) We have developed a Double… More >

  • Open Access

    ARTICLE

    Solving the BBMB Equation in Shallow Water Waves via Space-Time MQ-RBF Collocation

    Hongwei Ma1, Yingqian Tian2,*, Fuzhang Wang3,*, Quanfu Lou4, Lijuan Yu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3419-3432, 2025, DOI:10.32604/cmes.2025.070791 - 30 September 2025

    Abstract This study introduces a novel single-layer meshless method, the space-time collocation method based on multiquadric-radial basis functions (MQ-RBF), for solving the Benjamin-Bona-Mahony-Burgers (BBMB) equation. By reconstructing the time variable as a space variable, this method establishes a combined space-time structure that can eliminate the two-step computational process required in traditional grid methods. By introducing shape parameter-optimized MQ-RBF, high-precision discretization of the nonlinear, dispersive, and dissipative terms in the BBMB equation is achieved. The numerical experiment section validates the effectiveness of the proposed method through three benchmark examples. This method shows significant advantages in computational efficiency, More >

  • Open Access

    ARTICLE

    An Improved Local RBF Collocation Method for 3D Excavation Deformation Based on Direct Method and Mapping Technique

    Cheng Deng1,2, Hui Zheng2,*, Liangyong Gong1, Rongping Zhang1, Mengqi Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2147-2172, 2025, DOI:10.32604/cmes.2025.059750 - 27 January 2025

    Abstract Since the plasticity of soil and the irregular shape of the excavation, the efficiency and stability of the traditional local radial basis function (RBF) collocation method (LRBFCM) are inadequate for analyzing three-dimensional (3D) deformation of deep excavation. In this work, the technique known as the direct method, where the local influence nodes are collocated on a straight line, is introduced to optimize the LRBFCM. The direct method can improve the accuracy of the partial derivative, reduce the size effect caused by the large length-width ratio, and weaken the influence of the shape parameters on the More >

  • Open Access

    ARTICLE

    Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models

    Duc-Dam Nguyen1, Nguyen Viet Tiep2,*, Quynh-Anh Thi Bui1, Hiep Van Le1, Indra Prakash3, Romulus Costache4,5,6,7, Manish Pandey8,9, Binh Thai Pham1

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 467-500, 2025, DOI:10.32604/cmes.2024.056576 - 17 December 2024

    Abstract This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand, India, using advanced ensemble models that combined Radial Basis Function Networks (RBFN) with three ensemble learning techniques: DAGGING (DG), MULTIBOOST (MB), and ADABOOST (AB). This combination resulted in three distinct ensemble models: DG-RBFN, MB-RBFN, and AB-RBFN. Additionally, a traditional weighted method, Information Value (IV), and a benchmark machine learning (ML) model, Multilayer Perceptron Neural Network (MLP), were employed for comparison and validation. The models were developed using ten landslide conditioning factors, which included slope, aspect, elevation, curvature, land cover, geomorphology,… More >

  • Open Access

    ARTICLE

    Research on Grid-Connected Control Strategy of Distributed Generator Based on Improved Linear Active Disturbance Rejection Control

    Xin Mao*, Hongsheng Su, Jingxiu Li

    Energy Engineering, Vol.121, No.12, pp. 3929-3951, 2024, DOI:10.32604/ee.2024.057106 - 22 November 2024

    Abstract The virtual synchronous generator (VSG) technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources. However, the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response. In light of the issues above, a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control (ILADRC) is put forth for consideration. Firstly, an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop; then, the… More >

  • Open Access

    ARTICLE

    SOH Estimation of Lithium Batteries Based on ICA and WOA-RBF Algorithm

    Qi Wang1,2,3, Yandong Gu1,*, Tao Zhu1, Lantian Ge1, Yibo Huang1

    Energy Engineering, Vol.121, No.11, pp. 3221-3239, 2024, DOI:10.32604/ee.2024.053758 - 21 October 2024

    Abstract Accurately estimating the State of Health (SOH) of batteries is of great significance for the stable operation and safety of lithium batteries. This article proposes a method based on the combination of Capacity Incremental Curve Analysis (ICA) and Whale Optimization Algorithm-Radial Basis Function (WOA-RBF) neural network algorithm to address the issues of low accuracy and slow convergence speed in estimating State of Health of batteries. Firstly, preprocess the battery data to obtain the real battery SOH curve and Capacity-Voltage (Q-V) curve, convert the Q-V curve into an IC curve and denoise it, analyze the parameters… More >

  • Open Access

    ARTICLE

    CRBFT: A Byzantine Fault-Tolerant Consensus Protocol Based on Collaborative Filtering Recommendation for Blockchains

    Xiangyu Wu1, Xuehui Du1,*, Qiantao Yang1,2, Aodi Liu1, Na Wang1, Wenjuan Wang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1491-1519, 2024, DOI:10.32604/cmc.2024.052708 - 18 July 2024

    Abstract Blockchain has been widely used in finance, the Internet of Things (IoT), supply chains, and other scenarios as a revolutionary technology. Consensus protocol plays a vital role in blockchain, which helps all participants to maintain the storage state consistently. However, with the improvement of network environment complexity and system scale, blockchain development is limited by the performance, security, and scalability of the consensus protocol. To address this problem, this paper introduces the collaborative filtering mechanism commonly used in the recommendation system into the Practical Byzantine Fault Tolerance (PBFT) and proposes a Byzantine fault-tolerant (BFT) consensus… More >

Displaying 1-10 on page 1 of 95. Per Page