Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Genome-Wide Identification and Expression Profiling Suggest that Invertase Genes Function in Silique Development and the Response to Sclerotinia sclerotiorum in Brassica napus

    Jingsen Liu1,2, Jinqi Ma1,2, Ai Lin1,2, Chao Zhang1,2, Bo Yang1,2, Liyuan Zhang1,2, Lin Huang1,2, Jiana Li1,2,*

    Phyton-International Journal of Experimental Botany, Vol.89, No.2, pp. 253-273, 2020, DOI:10.32604/phyton.2020.09334

    Abstract Invertase (INV), a key enzyme in sucrose metabolism, irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose, thus playing important roles in plant growth, development, and biotic and abiotic stress responses. In this study, we identified 27 members of the BnaINV family in Brassica napus. We constructed a phylogenetic tree of the family and predicted the gene structures, conserved motifs, cis-acting elements in promoters, physicochemical properties of encoded proteins, and chromosomal distribution of the BnaINVs. We also analyzed the expression of the BnaINVs in different tissues and developmental stages in the B. napus cultivar Zhongshuang 11 using qRT-PCR. In… More >

  • Open Access

    ARTICLE

    FSPAM: A Feature Construction Method to Identifying Cell Populations in ScRNA-seq Data

    Amin Einipour1, Mohammad Mosleh1, *, Karim Ansari-Asl1, 2

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.1, pp. 377-397, 2020, DOI:10.32604/cmes.2020.08496

    Abstract The emergence of single-cell RNA-sequencing (scRNA-seq) technology has introduced new information about the structure of cells, diseases, and their associated biological factors. One of the main uses of scRNA-seq is identifying cell populations, which sometimes leads to the detection of rare cell populations. However, the new method is still in its infancy and with its advantages comes computational challenges that are just beginning to address. An important tool in the analysis is dimensionality reduction, which transforms high dimensional data into a meaningful reduced subspace. The technique allows noise removal, visualization and compression of high-dimensional data. This paper presents a new… More >

  • Open Access

    ABSTRACT

    Gene Expression Profiling of Human Hepatocytes Grown on Differing Substrate Stiffness

    Fan Feng1, Tingting Xia1, Runze Zhao1, Mengyue Wang1, Li Yang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 131-131, 2019, DOI:10.32604/mcb.2019.07211

    Abstract Objective: To study the effects of different substrate stiffness on human hepatocytes using RNA sequencing (RNA-Seq) technology. The stiffness was corresponding to physiology and pathology stiffness of liver tissues.
    Results: With the aid of RNA-Seq technology, our study characterizes the transcriptome of hepatocytes cultured on soft, moderate, stiff and plastic substrates. Compared to soft substrate, our RNA-Seq results revealed 1131 genes that were up-regulated and 2534 that were down-regulated on moderate substrate, 1370 genes that were up-regulated and 2677 down-regulated genes on stiff substrate. Functional enrichment analysis indicated that differentially expressed genes were associated with the regulation of actin… More >

  • Open Access

    ABSTRACT

    The Effect of Short-and Long-Term Simulated Microgravity on Immune Cells

    Sufang Wang1,2, Wenjuan Zhao1,2, Guolin Shi1,2, Nu Zhang1,2, Chen Zhang1,2, Hui Yang1,2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 100-100, 2019, DOI:10.32604/mcb.2019.07112

    Abstract Long-term space flight will be a major mission for International Space Administration. However, it has been shown that exposure to space flight result in immune system dysfunction. Therefore, understand the mechanism of immune response under microgravity condition is a key topic. Macrophage is one of the most important immune cells in human body, playing key roles in both innate and adaptive immune systems. In this research, we used mouse macrophages (RAW264.7) and collected samples at short-term (8 hour), mediate-term (24 hour) and long-term (48 hour) microgravity treatment. We measured cell proliferation, phagocytosis function and used next-generation sequencing (NGS) to obtain… More >

  • Open Access

    ABSTRACT

    Identification of Lysyl Oxidase on Repression of Inflammation for Promoting Anterior Cruciate Ligament Remodeling

    Yan Gao1, Chunli Wang1, Li Yang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 93-93, 2019, DOI:10.32604/mcb.2019.07322

    Abstract At present, anterior cruciate ligament (ACL) damage repair is still a huge challenge. Our previous studies indicated that the Lysyl oxidase (LOX) were significantly reduced in injurious ACL fibroblasts, which is the major reason for its poor healing ability. The main purpose of our study was to detected the potential of LOX to act as an anabolic agent in injured ACL. The effect of LOX on the ACL at a concentration of 20ng/mL was investigated. The molecular mechanisms and signaling pathway were elucidated by RNA-sequencing, q-PCR and western blotting. For the in vivo study, the LOX was injected into the… More >

Displaying 21-30 on page 3 of 25. Per Page