Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    Moving Multi-Object Detection and Tracking Using MRNN and PS-KM Models

    V. Premanand*, Dhananjay Kumar

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1807-1821, 2023, DOI:10.32604/csse.2023.026742 - 15 June 2022

    Abstract On grounds of the advent of real-time applications, like autonomous driving, visual surveillance, and sports analysis, there is an augmenting focus of attention towards Multiple-Object Tracking (MOT). The tracking-by-detection paradigm, a commonly utilized approach, connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the similarities of the appearance or the motion between them. For an efficient detection and tracking of the numerous objects in a complex environment, a Pearson Similarity-centred Kuhn-Munkres (PS-KM) algorithm was proposed in the present study. In this light, the input videos were, initially, gathered from the MOT… More >

  • Open Access

    ARTICLE

    Emotion Exploration in Autistic Children as an Early Biomarker through R-CNN

    S. P. Abirami1,*, G. Kousalya1, R. Karthick2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 595-607, 2023, DOI:10.32604/iasc.2023.027562 - 06 June 2022

    Abstract Autism Spectrum Disorder (ASD) is found to be a major concern among various occupational therapists. The foremost challenge of this neurodevelopmental disorder lies in the fact of analyzing and exploring various symptoms of the children at their early stage of development. Such early identification could prop up the therapists and clinicians to provide proper assistive support to make the children lead an independent life. Facial expressions and emotions perceived by the children could contribute to such early intervention of autism. In this regard, the paper implements in identifying basic facial expression and exploring their emotions… More >

  • Open Access

    ARTICLE

    Model Predictive Control Coupled with Artificial Intelligence for Eddy Current Dynamometers

    İhsan Uluocak1,*, Hakan Yavuz2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 221-234, 2023, DOI:10.32604/csse.2023.025426 - 01 June 2022

    Abstract The recent studies on Artificial Intelligence (AI) accompanied by enhanced computing capabilities supports increasing attention into traditional control methods coupled with AI learning methods in an attempt to bringing adaptiveness and fast responding features. The Model Predictive Control (MPC) technique is a widely used, safe and reliable control method based on constraints. On the other hand, the Eddy Current dynamometers are highly nonlinear braking systems whose performance parameters are related to many processes related variables. This study is based on an adaptive model predictive control that utilizes selected AI methods. The presented approach presents an More >

  • Open Access

    ARTICLE

    Evaluating Neural Dialogue Systems Using Deep Learning and Conversation History

    Inshirah Ali AlMutairi*, Ali Mustafa Qamar

    Journal on Artificial Intelligence, Vol.4, No.3, pp. 155-165, 2022, DOI:10.32604/jai.2022.032390 - 01 December 2022

    Abstract Neural talk models play a leading role in the growing popular building of conversational managers. A commonplace criticism of those systems is that they seldom understand or use the conversation data efficiently. The development of profound concentration on innovations has increased the use of neural models for a discussion display. In recent years, deep learning (DL) models have achieved significant success in various tasks, and many dialogue systems are also employing DL techniques. The primary issues involved in the generation of the dialogue system are acquiring perspectives into instinctual linguistics, comprehension provision, and conversation assessment.… More >

  • Open Access

    ARTICLE

    Detection of DDoS Attack in IoT Networks Using Sample Selected RNN-ELM

    S. Hariprasad1,*, T. Deepa1, N. Bharathiraja2

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1425-1440, 2022, DOI:10.32604/iasc.2022.022856 - 25 May 2022

    Abstract The Internet of Things (IoT) is a global information and communication technology which aims to connect any type of device to the internet at any time and in any location. Nowadays billions of IoT devices are connected to the world, this leads to easily cause vulnerability to IoT devices. The increasing of users in different IoT-related applications leads to more data attacks is happening in the IoT networks after the fog layer. To detect and reduce the attacks the deep learning model is used. In this article, a hybrid sample selected recurrent neural network-extreme learning… More >

  • Open Access

    ARTICLE

    Mutation Prediction for Coronaviruses Using Genome Sequence and Recurrent Neural Networks

    Pranav Pushkar1, Christo Ananth2, Preeti Nagrath1, Jehad F. Al-Amri5, Vividha1, Anand Nayyar3,4,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1601-1619, 2022, DOI:10.32604/cmc.2022.026205 - 18 May 2022

    Abstract The study of viruses and their genetics has been an opportunity as well as a challenge for the scientific community. The recent ongoing SARS-Cov2 (Severe Acute Respiratory Syndrome) pandemic proved the unpreparedness for these situations. Not only the countermeasures for the effect caused by virus need to be tackled but the mutation taking place in the very genome of the virus is needed to be kept in check frequently. One major way to find out more information about such pathogens is by extracting the genetic data of such viruses. Though genetic data of viruses have… More >

  • Open Access

    ARTICLE

    An Innovative Approach Utilizing Binary-View Transformer for Speech Recognition Task

    Muhammad Babar Kamal1, Arfat Ahmad Khan2, Faizan Ahmed Khan3, Malik Muhammad Ali Shahid4, Chitapong Wechtaisong2,*, Muhammad Daud Kamal5, Muhammad Junaid Ali6, Peerapong Uthansakul2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5547-5562, 2022, DOI:10.32604/cmc.2022.024590 - 21 April 2022

    Abstract The deep learning advancements have greatly improved the performance of speech recognition systems, and most recent systems are based on the Recurrent Neural Network (RNN). Overall, the RNN works fine with the small sequence data, but suffers from the gradient vanishing problem in case of large sequence. The transformer networks have neutralized this issue and have shown state-of-the-art results on sequential or speech-related data. Generally, in speech recognition, the input audio is converted into an image using Mel-spectrogram to illustrate frequencies and intensities. The image is classified by the machine learning mechanism to generate a… More >

  • Open Access

    ARTICLE

    Parkinson's Detection Using RNN-Graph-LSTM with Optimization Based on Speech Signals

    Ahmed S. Almasoud1, Taiseer Abdalla Elfadil Eisa2, Fahd N. Al-Wesabi3,4, Abubakar Elsafi5, Mesfer Al Duhayyim6, Ishfaq Yaseen7, Manar Ahmed Hamza7,*, Abdelwahed Motwakel7

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 871-886, 2022, DOI:10.32604/cmc.2022.024596 - 24 February 2022

    Abstract Early detection of Parkinson's Disease (PD) using the PD patients’ voice changes would avoid the intervention before the identification of physical symptoms. Various machine learning algorithms were developed to detect PD detection. Nevertheless, these ML methods are lack in generalization and reduced classification performance due to subject overlap. To overcome these issues, this proposed work apply graph long short term memory (GLSTM) model to classify the dynamic features of the PD patient speech signal. The proposed classification model has been further improved by implementing the recurrent neural network (RNN) in batch normalization layer of GLSTM… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Based PID Controller for an Eddy Current Dynamometer

    İhsan Uluocak1,*, Hakan Yavuz2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1229-1243, 2022, DOI:10.32604/iasc.2022.023835 - 08 February 2022

    Abstract This paper presents a design and real-time application of an efficient Artificial Intelligence (AI) method assembled with PID controller of an eddy current dynamometer (ECD) for robustness due to highly nonlinear system by reason of some magnetism phenomena such as skin effect and dissipated heat of eddy currents. PID Control which is known as the most popular conventional control method in industry is inadequate for such nonlinear systems. On the other hand, Adaptive Neural Fuzzy Interference System (ANFIS), Single Hidden Layer Neural Network (SHLNN), General Regression Neural Network (GRNN), and Radial Basis Neural Network (RBNN)… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuned Bidirectional Gated Recurrent Neural Network for Weather Forecasting

    S. Manikandan1,*, B. Nagaraj2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 761-775, 2022, DOI:10.32604/iasc.2022.023398 - 08 February 2022

    Abstract Weather forecasting is primarily related to the prediction of weather conditions that becomes highly important in diverse applications like drought discovery, severe weather forecast, climate monitoring, agriculture, aviation, telecommunication, etc. Data-driven computer modelling with Artificial Neural Networks (ANN) can be used to solve non-linear problems. Presently, Deep Learning (DL) based weather forecasting models can be designed to accomplish reasonable predictive performance. In this aspect, this study presents a Hyper Parameter Tuned Bidirectional Gated Recurrent Neural Network (HPT-BiGRNN) technique for weather forecasting. The HPT-BiGRNN technique aims to utilize the past weather data for training the BiGRNN… More >

Displaying 21-30 on page 3 of 46. Per Page