Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (90)
  • Open Access

    ARTICLE

    Distribution of the Sizes of Rock Cuttings in Gas Drilling At Various Depths

    Jun Li1, Shunji Yang1, Boyun Guo1,2, Yin Feng2, Gonghui Liu1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.2, pp. 79-96, 2012, DOI:10.3970/cmes.2012.089.079

    Abstract In the process of gas drilling, the mechanism of transport of the cuttings up the annulus is significant, because it controls the minimum amount of volume of the required gas, the cost of cleaning the borehole, the stability of the borewell and the drill pipe erosion, etc. However, current studies in this area are only limited to theoretical discussions. The reason why drill cuttings are of very fine sizes , in air drilling, is believed to be due to the repeated crushing action of drill bit at the bottom of the hole, and the collision between cuttings themselves and the… More >

  • Open Access

    ARTICLE

    Simulation of Reactive Fluid Flow in a Solid Rocket Motor Combustion-Chamber with/without Nozzle

    W. A. El-Askary1,2, S. A. Wilson2, A. Hegab2

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.3&4, pp. 235-266, 2011, DOI:10.3970/cmes.2011.076.235

    Abstract In the present work, a complete simulation of reactive flow in the combustion chamber of a rocket motor equipped with convergent-divergent nozzle has been introduced. The model describes the combustion process inside the combustion chamber considering a steady premixed reactant gas injected through side porous walls of the combustion chamber. The products flow through a convergent-divergent nozzle with adiabatic impermeable walls. The reactants are treated as two-dimensional, multi-components, turbulent compressible flow. The local properties of the mixture are calculated and updated during the solution process. At the boundary of the combustion chamber, a constant mass flux and predefined properties are… More >

  • Open Access

    ARTICLE

    Stress Function of Rock Surrounding the Circular Roadway with Uniform and Local Support by Natural BEM

    Dan Ma1,2, Xianbiao Mao1, Xiexing Miao1, Shaojie Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.3&4, pp. 233-246, 2011, DOI:10.3970/cmes.2011.074.233

    Abstract Rock surrounding the circular roadway with uniform and local support is one of the most common phenomenons in roadway support engineering, which needs to be studied thoroughly at the theoretical level. The existing literatures on stress field function of rock surrounding the roadway is largely restricted to analytical solutions of stress for roadways with a uniform support or no support at all, the corresponding stress solution under conditions of local support has not been provided. Based on the mechanical models of uniform support and local support, the methods of the complex variable function and the complex Fourier series, using the… More >

  • Open Access

    ARTICLE

    Contact between a Tunnel Lining and a Damage-Susceptible Viscoplastic Medium

    Frederic L. Pellet1

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.3, pp. 279-296, 2009, DOI:10.3970/cmes.2009.052.279

    Abstract In this study, the contact and interaction between a tunnel lining support and a damage-susceptible viscoplastic medium is investigated. First, back-analysis of the time-dependent behaviour of a drift excavated across a carboniferous rock mass which exhibited large delayed displacements was undertaken. Drift closure was simulated using an elasto-viscoplastic constitutive model that included the strength degradation process. This 3D numerical simulation was performed taking into account both stage construction sequence and rate of excavation advancement. A comparison of the numerical results with the data measured on site allowed for the calibration of the model parameters. Subsequently, the installation of a concrete… More >

  • Open Access

    ARTICLE

    An Approach to Uncertainty Analysis of Rockfall Simulation

    S. Turrin1, M. Hanss1, A.P.S. Selvadurai2

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.3, pp. 237-258, 2009, DOI:10.3970/cmes.2009.052.237

    Abstract Despite the continuing advances in rockfall analysis, the mathematical modeling and simulation of rockfall phenomena continues to be significantly influenced by a large amount of aleatory and epistemic uncertainty on significant number of model parameters. This paper focuses on the representation and quantification of epistemic uncertainties in rockfall modeling and simulation by fuzzy numbers. The propagation of the epistemic uncertainties considered is then calculated by the transformation method as a practical implementation of fuzzy arithmetic. Epistemic uncertainties on the material properties, on the boulder geometry and dimensions, on the kinematics of the impact and on the contact response between boulder… More >

  • Open Access

    ARTICLE

    Computations of a Compressible Turbulent Flow in a Rocket Motor-Chamber Configuration with Symmetric and Asymmetric Injection

    W.A. El-Askary1,2, A. Balabel2, S.M. El-Behery2, A. Hegab3

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.1, pp. 29-54, 2011, DOI:10.32604/cmes.2011.082.029

    Abstract In the present paper, the characteristics of compressible turbulent flow in a porous channels subjected to either symmetric or asymmetric mass injection are numerically predicted. A numerical computer-program including different turbulence models has been developed by the present authors to investigate the considered flow. The numerical method is based on the control volume approach to solve the governing Reynolds-Averaged Navier-Stokes (RANS) equations. Turbulence modeling plays a significant role here, in light of the complex flow generated, so several popular engineering turbulence models with good track records are evaluated, including five different turbulence models. Numerical results with available experimental data showed… More >

  • Open Access

    ARTICLE

    Natural Boundary Element Method for Stress Field in Rock Surrounding a Roadway with Weak Local Support

    Shuncai Li1,2,3, Zhengzhu Dong2, Dan Ma2

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.2, pp. 93-110, 2011, DOI:10.3970/cmes.2011.071.093

    Abstract Weak local support is a very common phenomenon in roadway support engineering. It is a problem that needs to be studied thoroughly at the theoretical level. So far, the literature on stress field theory of rock surrounding a roadway is largely restricted to analytical solutions of stress for roadways with a uniform support or no support at all. The corresponding stress solution under conditions of local or weak local support has not been provided. Based on a mechanical model of weak local support at the boundary of a circular roadway and the boundary element method on boundary value problems of… More >

  • Open Access

    ARTICLE

    An Inverse Boundary Element Method for Determining the Hydraulic Conductivity in Anisotropic Rocks

    R. Mustata1, S. D. Harris2, L. Elliott1, D. Lesnic1, D. B. Ingham1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 107-116, 2000, DOI:10.3970/cmes.2000.001.409

    Abstract An inverse boundary element method is developed to characterise the components of the hydraulic conductivity tensor K of anisotropic materials. Surface measurements at exposed boundaries serve as additional input to a Genetic Algorithm (GA) using a modified least squares functional that minimises the difference between observed and BEM-predicted boundary pressure and/or hydraulic flux measurements under current hydraulic conductivity tensor component estimates. More >

  • Open Access

    ARTICLE

    Three-Dimensional Numerical Analysis of Blast-Induced Damage Characteristics of the Intact and Jointed Rockmass

    Zhiliang Wang1,*, Youpeng Huang1, Feng Xiong1

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 1189-1206, 2019, DOI:10.32604/cmc.2019.04972

    Abstract This article reports numerical results investigating the damage evolution and spatial distribution characteristics of intact and jointed rockmass subjected to blast loading. The behaviors of rock material are described by the Holmquist- Johnson-Cook (HJC) constitutive model incorporated in the finite element software LS-DYNA. Results indicate that the damage distribution shows a reverse S-shape attenuation with the increase of the distance from borehole, and a better goodness of fit with the Logistic function is observed. In the single-hole blasting of jointed rockmass, there are two types of regions around the intersection of borehole and joint in which the damage degree is… More >

  • Open Access

    ARTICLE

    Numerical Studies on Stratified Rock Failure Based on Digital Image Processing Technique at Mesoscale

    Ang Li1, Guo-jian Shao1,2, Pei-rong Du3, Sheng-yong Ding1, Jing-bo Su4

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 17-38, 2015, DOI:10.3970/cmc.2015.045.017

    Abstract This paper investigates the failure behaviors of stratified rocks under uniaxial compression using a digital image processing (DIP) based finite difference method (FDM). The two-dimensional (2D) mesostructure of stratified rocks, represented as the internal spatial distribution of two main rock materials (marble and greenschist), is first identified with the DIP technique. And then the binaryzation image information is used to generate the finite difference grid. Finally, the failure behaviors of stratified rock samples are simulated by FDM considering the inhomogeneity of rock materials. In the DIP, an image segmentation algorithm based on seeded region growing (SRG) is proposed, instead of… More >

Displaying 81-90 on page 9 of 90. Per Page