Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,133)
  • Open Access

    ARTICLE

    A Finite Element Investigation of Elastic Flow Asymmetries in Cross-Slot Geometries Using a Direct Steady Solver

    A. Filali1, L. Khezzar1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 307-329, 2013, DOI:10.3970/fdmp.2013.009.307

    Abstract Numerical investigations of purely-elastic instabilities occurring in creeping flows are reported in planar cross-slot geometries with both sharp and round corners. The fluid is described by the upper-convected Maxwell model, and the governing equations are solved using the finite element technique based on a steady (non-iterative) direct solver implemented in the POLYFLOWcommercial software (version 14.0). Specifically, extensive simulations were carried out on different meshes, with and without the use of flow perturbations, for a wide range of rheological parameters. Such simulations show the onset of flow asymmetries above a critical Deborah number (De). The effect of rounding the corners is… More >

  • Open Access

    ARTICLE

    Heat Exchange between Film Condensation and Porous Natural Convection across a Vertical Wall

    Rashed Al-Ajmi1, Mohamed Mosaad1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.1, pp. 51-68, 2012, DOI:10.3970/fdmp.2011.008.051

    Abstract Conjugate heat transfer across a vertical solid wall separating natural convection in a cold fluid-saturated porous medium and film condensation in a saturated-vapour medium is analyzed. The analysis reveals that this thermal interaction process is mainly controlled by the thermal resistance ratio of wall to porous-side natural convection and that of condensate film to natural convection. Asymptotic and numerical results of interest are obtained for the local and mean overall Nusselt number as functions of these two thermal resistance ratios. More >

  • Open Access

    ARTICLE

    Profile Analysis of Regularly Microstructured Surfaces

    H. Payer1, T. Haschke1, R. Reichardt1, G. Li2, K. Graf2,3, W. Wiechert1,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.2, pp. 61-76, 2008, DOI:10.3970/fdmp.2008.004.061

    Abstract Microstructured surfaces are of steadily increasing importance in a large variety of technological applications. For the purpose of quality assurance, e.g. during variation studies of experimental parameters or for comparison with results from simulations, the surface geometry must be precisely measured and described in terms of geometric parameters. An analysis tool for regularly structured surfaces is presented that performs a highly automated evaluation of surface scanning data and derives geometric quality control parameters. To demonstrate the power of the analysis tool it is exemplarily applied for the investigation of microcraters emerging after the evaporation of micrometer-sized toluene droplets on a… More >

  • Open Access

    ARTICLE

    Coupling between Stationary Marangoni and Cowley-Rosensweig Instabilities in a Deformable Ferrofluid Layer

    M. Hennenberg1, B. Weyssow2, S. Slavtchev3, B. Scheid4

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.4, pp. 295-302, 2007, DOI:10.3970/fdmp.2007.003.295

    Abstract A horizontal thin layer of ferrofluid is bordered by a solid and open to an inert gas on the other side. It is submitted to a heat gradient and a weak magnetic field, both being normal to the free deformable surface, leading to a coupling between the Marangoni phenomenon, induced by the variation of surface tension along the free deformable surface and the isothermal Cowley-Rosensweig problem, consequence of the magnetic field. The study of the steady compatibility condition shows a new pattern of stationary instability. The critical wavenumber is of O(√Bo), the Bond number Bo being smaller than 1, at… More >

  • Open Access

    ARTICLE

    Thermal Communication between Two Vertical Systems of Free and Forced Convection via Heat Conduction across a Separating Wall

    M. Mosaad2, A. Ben-Nakhi2, M. H. Al-Hajeri2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 301-314, 2005, DOI:10.3970/fdmp.2005.001.301

    Abstract This work deals with the problem of thermal interaction between two fluid media at two different bulk temperatures and separated by a vertical plate. The problem is analyzed by taking into account the heat conduction across the separating plate. The flow configuration considered is one in which the two vertical boundary layers of free and forced convection developed on plate sides are in parallel flow. The dimensionless parameters governing the thermal interaction mechanisms are analytically deduced. The obtained results are presented in graphs to demonstrate the heat transfer characteristics of investigated phenomenon. The work reports a means to estimate the… More >

  • Open Access

    ARTICLE

    About the Formation of Macrosegregations During Continuous Casting of Sn-Bronze

    A. Ludwig1,2, M. Gruber-Pretzler2, M. Wu2, A. Kuhn3, J. Riedle3

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 285-300, 2005, DOI:10.3970/fdmp.2005.001.285

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Gyro-Chirality Effect of Bianisotropic Substrate on the Resonant Frequency and Half-power Bandwidth of Rectangular Microstrip Patch Antenna

    CMC-Computers, Materials & Continua, Vol.52, No.2, pp. 123-131, 2016, DOI:10.3970/cmc.2016.052.123

    Abstract In this paper, the gyrotropic bi-anisotropy of the chiral medium in substrate constitutive parameters (xc and hc) of a rectangular microstrip patch antenna is introduced in order to observe its effects on the complex resonant frequency and half-power bandwidth. The analysis is based on the full-wave spectral domain approach using the Moment Method, with sinusoidal type basis functions. The numerical calculations related to the dominant mode have been carried out, and it has been observed that the resonant frequency and the bandwidth are directly linked to the medium chirality. The new results can be considered as a generalisation form of… More >

  • Open Access

    ARTICLE

    A Discrete Fourier Transform Framework for Localization Relations

    D.T. Fullwood1, S.R. Kalidindi2, B.L. Adams1, S. Ahmadi1

    CMC-Computers, Materials & Continua, Vol.9, No.1, pp. 25-40, 2009, DOI:10.3970/cmc.2009.009.025

    Abstract Localization relations arise naturally in the formulation of multi-scale models. They facilitate statistical analysis of local phenomena that may contribute to failure related properties. The computational burden of dealing with such relations is high and recent work has focused on spectral methods to provide more efficient models. Issues with the inherent integrations in the framework have led to a tendency towards calibration-based approaches. In this paper a discrete Fourier transform framework is introduced, leading to an extremely efficient basis for the localization relations. Previous issues with the Green's function integrals are resolved, and the method is validated against finite element… More >

  • Open Access

    ARTICLE

    Numerical Modeling of Grain Structure in Continuous Casting of Steel

    A.Z. Lorbiecka1, R.Vertnik2, H.Gjerkeš1, G. Manojlovič2, B.Senčič2, J. Cesar2, B.Šarler1,3

    CMC-Computers, Materials & Continua, Vol.8, No.3, pp. 195-208, 2008, DOI:10.3970/cmc.2008.008.195

    Abstract A numerical model is developed for the simulation of solidification grain structure formation (equiaxed to columnar and columnar to equiaxed transitions) during the continuous casting process of steel billets. The cellular automata microstructure model is combined with the macroscopic heat transfer model. The cellular automata method is based on the Nastac's definition of neighborhood, Gaussian nucleation rule, and KGT growth model. The heat transfer model is solved by the meshless technique by using local collocation with radial basis functions. The microscopic model parameters have been adjusted with respect to the experimental data for steel 51CrMoV4. Simulations have been carried out… More >

  • Open Access

    ARTICLE

    Cracking and Creep Role in Displacements at Constant Load: Concrete Solids in Compression

    E. Ferretti1, A. Di Leo1

    CMC-Computers, Materials & Continua, Vol.7, No.2, pp. 59-80, 2008, DOI:10.3970/cmc.2008.007.059

    Abstract The main assumption on the basis of the identifying model of the effective law, developed by the Author, is the impossibility of considering the specimen as a continuum, when an identifying procedure from load-displacement to stress-strain in uniaxial compression is attempted. Actually, a failure mechanism with propagation of a macro-crack was found to activate from the very beginning of the uniaxial compression test forth. This leads to considering the acquired displacements as composed by two quotes: one constitutive, due to the material strain, and one of crack opening. Since the ratio between these two quotes is not constant during the… More >

Displaying 1081-1090 on page 109 of 1133. Per Page