Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,137)
  • Open Access

    ARTICLE

    A Geometrical Comparison between Cell Method and Finite Element Method in Electrostatics

    M. Heshmatzadeh, G. E. Bridges1

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.1, pp. 45-58, 2007, DOI:10.3970/cmes.2007.018.045

    Abstract Cell Method, a Finite Formulation technique, is compared in detail with the Finite Element Method (FEM), a differential-based numerical technique. In the finite formulation technique, Poisson's equation is described starting from a topological foundation. The final set of algebraic equations resulting from the two approaches are compared in matrix form. The equivalence of the coefficient matrices is proven for a Voronoi dual mesh and linear shape functions in the FEM. The difference between the source (charge) vectors in the two approaches is described. It is shown that the use of linear shape functions in the FEM is equivalent to the… More >

  • Open Access

    ARTICLE

    Discrete Dislocation Dynamics Simulation of Interfacial Dislocation Network in Gamma/Gamma-Prime Microstructure of Ni-based Superalloys

    K. Yashiro1, Y. Nakashima1, Y. Tomita1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.2, pp. 73-80, 2006, DOI:10.3970/cmes.2006.011.073

    Abstract A simple back force model is proposed for a dislocation cutting into γ' precipitate, taking the work formaking and recovering an anti-phase boundary (APB) into account. The first dislocation, or a leading partial of a superdislocation, is acted upon by a back force whose magnitude is equal to the APB energy. The second dislocation, or a trailing partial of a superdislocation, is attracted by the APB with a force of the same magnitude. The model is encoded in the 3D discrete dislocation dynamics (DDD) code and applied to the cutting behavior of dislocations at a γ/γ' interface covered by an… More >

  • Open Access

    ARTICLE

    A Comparative Investigation of Different Homogenization Methods for Prediction of the Macroscopic Properties of Composites

    Qing-Sheng Yang1,2, Wilfried Becker3

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.4, pp. 319-332, 2004, DOI:10.3970/cmes.2004.006.319

    Abstract The present paper focuses on the comparative investigation of different homogenization methods for fiber composites, void solids and rigid inclusion media. The effective properties of multi-phase media are calculated by three methods, i.e. direct average method of stress and strain, direct average method of strain energy and two-scale expansion method. A comprehensive comparison, in principle and numerically, of these methods is emphasized. It is obvious that the two direct average methods are identical in principle and therefore they give the same numerical results. It is shown that the two-scale expansion method is the same as the direct average concept of… More >

  • Open Access

    ARTICLE

    Three Dimensional Wave Scattering by Rigid Circular Pipelines Submerged in an Acoustic Waveguide

    António Tadeu, Andreia Pereira, Luís Godinho1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.1, pp. 49-62, 2001, DOI:10.3970/cmes.2001.002.049

    Abstract The Boundary Element Method (BEM) is used to compute the three-dimensional variation pressure field generated by a point pressure source inside a flat waveguide channel filled with a homogeneous fluid, in the presence of infinite rigid circular pipelines. The problem is solved in the frequency domain, using boundary elements to model the pipeline and an appropriate Green's function to simulate the free surface and the rigid floor of the channel. Because of the 2 ---1/2 ---D geometry of the problem, the separation of variables has been used, and the solution at each frequency is expressed in terms of waves with… More >

  • Open Access

    ARTICLE

    Design and Fabrication of an Electrostatic Variable Gap Comb Drive in Micro-Electro-Mechanical Systems

    Wenjing Ye1, Subrata Mukherjee2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 111-120, 2000, DOI:10.3970/cmes.2000.001.111

    Abstract Polynomial driving-force comb drives are designed using numerical simulation. The electrode shapes are obtained using the indirect boundary element method. Variable gap comb drives that produce combinations of linear, quadratic, and cubic driving-force profiles are synthesized. This inverse problem is solved by an optimization procedure. Sensitivity analysis is carried out by the direct differentiation approach (DDA) in order to compute design sensitivity coefficients (DSCs) of force profiles with respect to parameters that define the shapes of the fingers of a comb drive. The DSCs are then used to drive iterative optimization procedures. Designs of variable gap comb drives with linear,… More >

  • Open Access

    ARTICLE

    Accurate Modelling and Simulation of Thermomechanical Microsystem Dynamics

    S. Taschini1, J. Müller2, A. Greiner2, M. Emmenegger1, H. Baltes1, J.G. Korvink2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 31-44, 2000, DOI:10.3970/cmes.2000.001.031

    Abstract We present three techniques to accurately model the thermomechanical response of microsystem components: a new, accurate and stable Kirchhoff-Love multi-layered plate model implemented as an Argyris finite element, a model for the amplitude fluctuations of vibrational modes in micro-mechanical structures within a gaseous environment, and the consistent refinement of a finite element mesh in order to maximize the computational accuracy for a given mesh size. We have implemented these techniques in our in-house MEMS finite element program and accompanying Monte Carlo simulator. We demonstrate our approach to dynamic modeling by computing the thermomechanical response of a CMOS AFM beam. More >

  • Open Access

    ARTICLE

    A Study on Microstructural and Mechanical Properties of a Stir Cast Al (SiC-Mg-TiFe) Composite

    Samuel Olukayode Akinwamide1, Serge Mudinga Lemika1, Babatunde Abiodun Obadele1,3, Ojo Jeremiah Akinribide1, Bolanle Tolulope Abe2, Peter Apata Olubambi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 15-26, 2019, DOI:10.32604/fdmp.2019.04761

    Abstract Development of metal matrix composite is becoming widespread in most engineering applications where excellent mechanical properties are required. Mechanical and microstructural properties of aluminium reinforced with silicon carbide was investigated. Ingot of aluminium was melted in a furnace at temperature ranging between 650-700 ℃. Ferrotitanium and silicon carbide were preheated in a muffle furnace before addition to molten aluminium in a crucible furnace. Fixed proportions of magnesium, ferrotitanium and varying proportions of silicon carbide were utilized as reinforcements. Stirring was carried out manually for a minimum of 10 mins after the addition of each weight percent of silicon carbide. Resulting… More >

  • Open Access

    ARTICLE

    Influence of Ground Stress on Coal Seam Gas Pressure and Gas Content

    Xuebo Zhang1, 2, 3, Zhiwei Jia1, 2, 3, *

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 53-61, 2019, DOI:10.32604/fdmp.2019.04779

    Abstract The influence of ground stress was quantitatively analyzed on coal seam gas pressure and gas content in this paper. Mining activities in coal mine can result in stress concentration in the coal (rock) body around the mining space, but porosity of the coal seam would not change too much. Therefore, gas pressure and gas content in the coal seam are slightly affected. Studies showed that the free gas was gradually transformed into adsorbed gas, and the gas adsorption volume was small, and then gas pressure increases roughly linearly when the porosity decreased because of stress influence. Additionaly, when porosity of… More >

  • Open Access

    ARTICLE

    Numerical Investigation Of Flow Dynamic In Mini- Channel: Case Of A Mini Diode Tesla

    Brahim DENNAI1*, Mohammed EL Bizani BELBOUKHARI1 , Tawfiq CHEKIFI1, Rachid KHELFAOUl1

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.3, pp. 102-110, 2016, DOI:10.3970/fdmp.2016.012.102

    Abstract Microfluidic systems are used and exploited in various fields, as they are highly specific and developed in their use. The micro devices are used in various analyzes of medical disciplines, chemical and other fields. Our research team "MAAt" within ENERGARID laboratory is in the process of triggered several lines of research in this area, the micro-mixing, separation of micro particles, droplet production. For that, we need tools and micro devices to study the phenomena.. In this work, we present a theoretical study and numerical simulation of micro device (micro diode Tesla). A Diode Tesla is similar to a heart valve… More >

  • Open Access

    ARTICLE

    Effect of Porosity and Magnetic Field Dependent Viscosity on Revolving Ferrofluid Flow in the Presence of Stationary Disk

    Anupam Bh,ari1, Vipin Kumar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.3, pp. 359-375, 2014, DOI:10.3970/fdmp.2014.010.359

    Abstract The purpose of this paper is to study the flow characteristics of a ferrofluid revolving through a porous medium with a magnetic-field-dependent viscosity in the presence of a stationary disk. A Finite Difference Method is employed to discretize the set of nonlinear coupled differential equations involved in the problem. The discretized nonlinear equations, in turn, are solved by a Newton method (using MATLAB) taking the initial guess with the help of a PDE Solver. Results displayed in graphical form are used to assess the effect of the variable viscosity and porosity parameters on the velocity components. The displacement thickness of… More >

Displaying 1071-1080 on page 108 of 1137. Per Page