Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access

    PROCEEDINGS

    Comprehensive Simulation of Hot Shape Rolling by Considering the Casting Defects

    Umut Hanoglu1,2,*, Božidar Šarler1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09610

    Abstract In this research, a rolling simulation system based on a novel meshless solution procedure is upgraded considering casting defects in the material model. The improved model can predict the final stage of the defects after multi-pass rolling. The casted steel billet that enters the rolling mill arrives with casting defects. Those defects may be porosity due to the shrinkage and cavity or micro-cracks near the surface due to hot tearing. In this work, porosity is considered the main defect source since it can easily be determined experimentally. The damage theory develops a damaged stiffness matrix with a scalar damage value.… More >

  • Open Access

    PROCEEDINGS

    Simulation of Reheating Furnace for Steel Billets by a Meshless Method

    Qingguo Liu1,2, Umut Hanoglu1,2, Božidar Šarler1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09609

    Abstract A simulation of reheating furnace in a steel production line where the steel billets are heated from room temperature up to 1200 ˚C, is carried out using a novel meshless solution procedure. The reheating of the steel billets before the continuous hot-rolling process should be employed to dissolve alloying elements as much as possible and redistribute the carbon. In this work, governing equations are solved by the local radial basis function collocation method (LRBFCM) in a strong form with explicit time-stepping. The solution of the diffusion equations for the temperature and carbon concentration fields is formulated on a twodimensional slice.… More >

  • Open Access

    ARTICLE

    Hybridized Intelligent Neural Network Optimization Model for Forecasting Prices of Rubber in Malaysia

    Shehab Abdulhabib Alzaeemi1, Saratha Sathasivam2,*, Majid Khan bin Majahar Ali2, K. G. Tay1, Muraly Velavan3

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1471-1491, 2023, DOI:10.32604/csse.2023.037366

    Abstract Rubber producers, consumers, traders, and those who are involved in the rubber industry face major risks of rubber price fluctuations. As a result, decision-makers are required to make an accurate estimation of the price of rubber. This paper aims to propose hybrid intelligent models, which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data, spanning from January 2016 to March 2021. The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining (RBFNN-kSAT). These algorithms, including Grey Wolf Optimization Algorithm, Artificial Bee Colony… More >

  • Open Access

    ARTICLE

    Structural Optimization of Metal and Polymer Ore Conveyor Belt Rollers

    João Pedro Ceniz, Rodrigo de Sá Martins, Marco Antonio Luersen*, Tiago Cousseau

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 601-618, 2022, DOI:10.32604/cmes.2022.021011

    Abstract Ore conveyor belt rollers operate in harsh environments, making them prone to premature failure. Their service lives are highly dependent on the stress field and bearing misalignment angle, for which limit values are defined in a standard. In this work, an optimization methodology using metamodels based on radial basis functions is implemented to reduce the mass of two models of rollers. From a structural point of view, one of the rollers is made completely of metal, while the other also has some components made of polymeric material. The objective of this study is to develop and apply a parametric structural… More >

  • Open Access

    ARTICLE

    An Efficient Meshless Method for Hyperbolic Telegraph Equations in (1 + 1) Dimensions

    Fuzhang Wang1,2, Enran Hou2,*, Imtiaz Ahmad3, Hijaz Ahmad4, Yan Gu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 687-698, 2021, DOI:10.32604/cmes.2021.014739

    Abstract Numerical solutions of the second-order one-dimensional hyperbolic telegraph equations are presented using the radial basis functions. The purpose of this paper is to propose a simple novel direct meshless scheme for solving hyperbolic telegraph equations. This is fulfilled by considering time variable as normal space variable. Under this scheme, there is no need to remove time-dependent variable during the whole solution process. Since the numerical solution accuracy depends on the condition of coefficient matrix derived from the radial basis function method. We propose a simple shifted domain method, which can avoid the full-coefficient interpolation matrix easily. Numerical experiments performed with… More >

  • Open Access

    ARTICLE

    Multiquadric Radial Basis Function Approximation Scheme for Solution of Total Variation Based Multiplicative Noise Removal Model

    Mushtaq Ahmad Khan1,*, Ahmed B. Altamimi2, Zawar Hussain Khan3, Khurram Shehzad Khattak3, Sahib Khan4,*, Asmat Ullah3, Murtaza Ali1

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 55-88, 2021, DOI: 10.32604/cmes.2021.011163

    Abstract This article introduces a fast meshless algorithm for the numerical solution nonlinear partial differential equations (PDE) by Radial Basis Functions (RBFs) approximation connected with the Total Variation (TV)-based minimization functional and to show its application to image denoising containing multiplicative noise. These capabilities used within the proposed algorithm have not only the quality of image denoising, edge preservation but also the property of minimization of staircase effect which results in blocky effects in the images. It is worth mentioning that the recommended method can be easily employed for nonlinear problems due to the lack of dependence on a mesh or… More >

  • Open Access

    ARTICLE

    Real-Time Thermomechanical Modeling of PV Cell Fabrication via a POD-Trained RBF Interpolation Network

    Arka Das1, Anthony Khoury1, Eduardo Divo1, *, Victor Huayamave1, Andres Ceballos2, Ron Eaglin2, Alain Kassab3, Adam Payne4, Vijay Yelundur4, Hubert Seigneur5

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 757-777, 2020, DOI:10.32604/cmes.2020.08164

    Abstract This paper presents a numerical reduced order model framework to simulate the physics of the thermomechanical processes that occur during c-Si photovoltaic (PV) cell fabrication. A response surface based on a radial basis function (RBF) interpolation network trained by a Proper Orthogonal Decomposition (POD) of the solution fields is developed for fast and accurate approximations of thermal loading conditions on PV cells during the fabrication processes. The outcome is a stand-alone computational tool that provides, in real time, the quantitative and qualitative thermomechanical response as a function of user-controlled input parameters for fabrication processes with the precision of 3D finite… More >

  • Open Access

    ARTICLE

    Meshless Method with Enriched Radial Basis Functions for Fracture Mechanics

    P.H. Wen1, M.H. Aliabadi2

    Structural Durability & Health Monitoring, Vol.3, No.2, pp. 107-120, 2007, DOI:10.3970/sdhm.2007.003.107

    Abstract In the last decade, meshless methods for solving differential equations have become a promising alternative to the finite element and boundary element methods. Based on the variation of potential energy, the element-free Galerkin method is developed on the basis of finite element method by the use of radial basis function interpolation. An enriched radial basis function is formulated to capture the stress singularity at the crack tip. The usual advantages of finite element method are retained in this method but now significant improvement of accuracy. Neither the connectivity of mesh in the domain by the finite element method or integrations… More >

  • Open Access

    ARTICLE

    2D and 3D Multiphysics Voronoi Cells, Based on Radial Basis Functions, for Direct Mesoscale Numerical Simulation (DMNS) of the Switching Phenomena in Ferroelectric Polycrystalline Materials

    Peter L. Bishay1, Satya N. Atluri1

    CMC-Computers, Materials & Continua, Vol.33, No.1, pp. 19-62, 2013, DOI:10.3970/cmc.2013.033.019

    Abstract In this paper, 2D and 3D Multiphysics Voronoi Cells (MVCs) are developed, for the Direct Mesoscale Numerical Simulation (DMNS) of the switching phenomena in ferroelectric polycrystalline materials. These arbitrarily shaped MVCs (arbitrary polygons in 2D, and arbitrary polyhedrons in 3D with each face being an arbitrary polygon) are developed, based on assuming radial basis functions to represent the internal primal variables (mechanical displacements and electric potential), and assuming linear functions to represent the primal variables on the element boundaries. For the 3D case, the linear functions used to represent the primal variables on each of the polygonal surfaces of the… More >

  • Open Access

    ARTICLE

    Numerical Solution of Non-Isothermal Fluid Flows Using Local Radial Basis Functions (LRBF) Interpolation and a Velocity-Correction Method

    G. C. Bourantas1, E. D. Skouras2,3, V. C. Loukopoulos4, G. C. Nikiforidis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.2, pp. 187-212, 2010, DOI:10.3970/cmes.2010.064.187

    Abstract Meshfree point collocation method (MPCM) is developed, solving the velocity-vorticity formulation of Navier-Stokes equations, for two-dimensional, steady state incompressible viscous flow problems in the presence of heat transfer. Particular emphasis is placed on the application of the velocity-correction method, ensuring the continuity equation. The Gaussian Radial Basis Functions (GRBF) interpolation is employed to construct the shape functions in conjunction with the framework of the point collocation method. The cases of forced, natural and mixed convection in a 2D rectangular enclosure are examined. The accuracy and the stability of the proposed scheme are demonstrated through three representative, well known and established… More >

Displaying 1-10 on page 1 of 59. Per Page