Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    An Interpolation Method for Karhunen–Loève Expansion of Random Field Discretization

    Zi Han1,*, Zhentian Huang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 245-272, 2024, DOI:10.32604/cmes.2023.029708

    Abstract In the context of global mean square error concerning the number of random variables in the representation, the Karhunen–Loève (KL) expansion is the optimal series expansion method for random field discretization. The computational efficiency and accuracy of the KL expansion are contingent upon the accurate resolution of the Fredholm integral eigenvalue problem (IEVP). The paper proposes an interpolation method based on different interpolation basis functions such as moving least squares (MLS), least squares (LS), and finite element method (FEM) to solve the IEVP. Compared with the Galerkin method based on finite element or Legendre polynomials, the main advantage of the… More > Graphic Abstract

    An Interpolation Method for Karhunen–Loève Expansion of Random Field Discretization

Displaying 1-10 on page 1 of 1. Per Page