Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,087)
  • Open Access

    ARTICLE

    A Subsynchronous Oscillation Suppression Method Based on Self-Adaptive Auto Disturbance Rejection Proportional Integral Control of Voltage Source Converter Based Multi-Terminal Direct Current System with Doubly-Fed Induction Generator-Based Wind Farm Access

    Miaohong Su1, Haiying Dong1,2,*, Kaiqi Liu1, Weiwei Zou1

    Energy Engineering, Vol.117, No.6, pp. 439-452, 2020, DOI:10.32604/EE.2020.011805 - 16 October 2020

    Abstract A subsynchronous oscillation suppression strategy based on self-adaptive auto disturbance rejection proportional integral controller is proposed for doublyfed induction generator-based wind farm integrated into grid through voltage source converter based multi-terminal direct current. In this strategy, the nonlinear PI controller is constructed by fal function to replace the traditional linear PI controller, and then the tracking differentiator is used to arrange the appropriate transition process in combination with the idea of active disturbance rejection control, and the self-adaptive auto disturbance rejection proportional integral controller is designed. By applying the controller to the inner loop of the… More >

  • Open Access

    ARTICLE

    Investigation of Core Loss Calculation Methods for Nanocrystalline Core in Medium Frequency Range

    Yunxiang Guo1, Cheng Lu1,2, Feng Yu1, Liang Hua1, Xinsong Zhang1,*

    Energy Engineering, Vol.117, No.6, pp. 429-438, 2020, DOI:10.32604/EE.2020.011673 - 16 October 2020

    Abstract Nanocrystalline core is often adopted in high-power medium-frequency transformer, whose excitation voltage is usually a rectangular wave with an adjustable duty ratio. In this paper, several kinds of methods are proposed for core loss calculation under non-sinusoidal voltage excitation by modifying the original Steinmetz equation (OSE). Firstly, these correction methods are compared in theory, and their analytical equations under rectangular voltage with an adjustable duty ratio are deduced. Then, a hysteresis loop measurement system is established to measure the core loss density of a nanocrystalline core. Based on the measured results of the core loss More >

  • Open Access

    ARTICLE

    Research on Effect of Icing Degree on Performance of NACA4412 Airfoil Wind Turbine

    Yuhao Jia1, Bin Cheng1,2,*, Xiyang Li1,2, Hui Zhang1,2, Yinglong Dong1

    Energy Engineering, Vol.117, No.6, pp. 413-427, 2020, DOI:10.32604/EE.2020.012019 - 16 October 2020

    Abstract In order to study the effect of icing on the wind turbine blade tip speed ratio and wind energy utilization coefficient under working conditions, it is important to better understand the growth characteristics of wind turbine blade icing under natural conditions. In this paper, the icing test of the NACA4412 airfoil wind turbine was carried out using the natural low temperature wind turbine icing test system. An evaluation model of icing degree was established, and the influence of wind speed and icing degree on the performance parameters of wind turbines was compared and analyzed. It… More >

  • Open Access

    ARTICLE

    Improved Thermal Efficiency of Salinity Gradient Solar Pond by Suppressing Surface Evaporation Using an Air Layer

    Asaad H. Sayer1, Hameed B. Mahood2,*

    Energy Engineering, Vol.117, No.6, pp. 367-379, 2020, DOI:10.32604/EE.2020.011156 - 16 October 2020

    Abstract Salinity gradient solar ponds (SGSPs) provide a tremendous way to collect and store solar radiation as thermal energy, and can help meet the critical need for sustainable ways of producing fresh water. However, surface evaporation results in the loss of both water and heat. This study therefore theoretically investigates the effect on temperatures within an SGSP when its surface is covered with a layer of air encased in a nylon bag. An earlier SGSP model was slightly modified to add the air layer and to estimate the temperature distributions of the upper layer or the… More >

  • Open Access

    ARTICLE

    Research on Distribution Network Full Cost-Benefit Optimization Considering Different Renewable Energy Penetration

    Tanzhong Fu1,2,3, Yu Xue1,*, Tancai Xia1, Wang Jing1, De Gejirifu1

    Energy Engineering, Vol.117, No.6, pp. 397-411, 2020, DOI:10.32604/EE.2020.011633 - 16 October 2020

    Abstract To further study the impact of renewable energy penetration on the technical transformation of distribution networks. Based on the output power characteristics of wind power and photovoltaics, a renewable energy grid-connected capacity model and a distribution network full cost-benefit model were constructed. Based on this, to maximize the comprehensive income of the distribution network and the renewable energy penetration rate, to establish the technical reform optimization model and search for the optimal solution through the improved NSGA-II algorithm. Finally, the effectiveness of the proposed model was verified by setting up three scenarios of simultaneous wind More >

  • Open Access

    ARTICLE

    Wind Farm-Battery Energy Storage Assessment in Grid-Connected Microgrids

    Shafiqur Rehman1, Umar T. Salman2,*, Luai M. Alhems1

    Energy Engineering, Vol.117, No.6, pp. 343-365, 2020, DOI:10.32604/EE.2020.011471 - 16 October 2020

    Abstract Renewable energy has received much attention in the last few decades and more investment is being attracted across the world to boost its contribution towards the existing energy mix. In the Kingdom of Saudi Arabia (KSA), many studies have been conducted on the potential of renewable energy sources (RES), such as wind, solar, and geothermal. Many of these studies have revealed that the Kingdom is blessed with an abundance of RES with wind energy being the best after solar. This paper presents an analysis of windfarm distributed generation (WFDG) for energy management strategy in the… More >

  • Open Access

    ARTICLE

    A Method of Disc Inclination Correction Based on the Inversion Model of Rotation Law

    Yanan Zhang1,*, Lin Ouyang2, Qinqin Li2, Haichen Ju2

    Journal on Big Data, Vol.2, No.3, pp. 125-133, 2020, DOI:10.32604/jbd.2020.012879 - 13 October 2020

    Abstract Under the traditional dynamic model, the conventional method for solving the rotation angle of a rigid body is to use the fixed-axis rotation law of the rigid body, but the known rotation shaft position must be used as a prerequisite. In practical work, for the rotation of a rigid body under multiple forces, solving the shaft is often a difficult problem. In this paper, we consider the rigid body of the disc is subjected to the force of uneven magnitude from multiple angles, the position of the rotating shaft is obtained by iterative inversion through… More >

  • Open Access

    ARTICLE

    Forecasting Multi-Step Ahead Monthly Reference Evapotranspiration Using Hybrid Extreme Gradient Boosting with Grey Wolf Optimization Algorithm

    Xianghui Lu1, Junliang Fan2, Lifeng Wu1,*, Jianhua Dong3

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 699-723, 2020, DOI:10.32604/cmes.2020.011004 - 12 October 2020

    Abstract It is important for regional water resources management to know the agricultural water consumption information several months in advance. Forecasting reference evapotranspiration (ET0) in the next few months is important for irrigation and reservoir management. Studies on forecasting of multiple-month ahead ET0 using machine learning models have not been reported yet. Besides, machine learning models such as the XGBoost model has multiple parameters that need to be tuned, and traditional methods can get stuck in a regional optimal solution and fail to obtain a global optimal solution. This study investigated the performance of the hybrid extreme… More >

  • Open Access

    ARTICLE

    Dynamical Stability of Cantilevered Pipe Conveying Fluid with Inerter-Based Dynamic Vibration Absorber

    Zhiyuan Liu1,2, Xin Tan2, Xiaobo Liu1,2, Pingan Chen1,2, Ke Yi1,2, Tianzhi Yang1,2, Qiao Ni3,4, Lin Wang3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 495-514, 2020, DOI:10.32604/cmes.2020.012030 - 12 October 2020

    Abstract Cantilevered pipe conveying fluid may become unstable and flutter instability would occur when the velocity of the fluid flow in the pipe exceeds a critical value. In the present study, the theoretical model of a cantilevered fluid-conveying pipe attached by an inerter-based dynamic vibration absorber (IDVA) is proposed and the stability of this dynamical system is explored. Based on linear governing equations of the pipe and the IDVA, the effects of damping coefficient, weight, inerter, location and spring stiffness of the IDVA on the critical flow velocities of the pipe system is examined. It is More >

  • Open Access

    ARTICLE

    Analysis of Temperature Rise in High-Speed Permanent Magnet Synchronous Traction Motors by Coupling the Equivalent Thermal Circuit Method and Computational Fluid Dynamics

    Jungang Jia*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.5, pp. 919-933, 2020, DOI:10.32604/fdmp.2020.09566 - 09 October 2020

    Abstract To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors, the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics. Also, a cooling strategy is proposed to solve the problem of temperature rise, which is expected to prolong the service life of these devices. First, the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed, then the fluid flow for the considered motor is analyzed, and the… More >

Displaying 4621-4630 on page 463 of 7087. Per Page