Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    REVIEW

    A Review of Modern Strategies for Enhancing Power Quality and Hosting Capacity in Renewable-Integrated Grids: From Conventional Devices to AI-Based Solutions

    Adel A.Abou El-Ela1, Ragab A. El-Sehiemy2,3,4,*, Abdallah Nazih1, Asmaa A. Mubarak5, Eman S. Ali1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1349-1388, 2025, DOI:10.32604/cmes.2025.069507 - 26 November 2025

    Abstract Distribution systems face significant challenges in maintaining power quality issues and maximizing renewable energy hosting capacity due to the increased level of photovoltaic (PV) systems integration associated with varying loading and climate conditions. This paper provides a comprehensive overview on the exit strategies to enhance distribution system operation, with a focus on harmonic mitigation, voltage regulation, power factor correction, and optimization techniques. The impact of passive and active filters, custom power devices such as dynamic voltage restorers (DVRs) and static synchronous compensators (STATCOMs), and grid modernization technologies on power quality is examined. Additionally, this paper… More >

  • Open Access

    ARTICLE

    Calculation of Commutation Failure Overvoltage in High-Voltage Direct Current Transmission Terminal Systems with Grid-Forming Renewable Energy Sources

    Weibing Xu1, Bo Yao2,*, Xiangjun Quan3, Xunyou Zhang1, Ning Zou2, Shuo Liu2, Jia Wang4, Jiansuo Zhang4

    Energy Engineering, Vol.122, No.10, pp. 4225-4243, 2025, DOI:10.32604/ee.2025.066738 - 30 September 2025

    Abstract The integration of large-scale new energy and high-capacity DC transmission leads to a reduction in system inertia. Grid-forming renewable energy sources (GF-RES) has a significant improvement effect on system inertia. Commutation failure faults may cause a short-term reactive power surplus at the sending end and trigger transient overvoltage, threatening the safe and stable operation of the power grid. However, there is a lack of research on the calculation method of transient overvoltage caused by commutation failure in high-voltage DC transmission systems with grid-forming renewable energy sources integration. Based on the existing equivalent model of high-voltage… More >

  • Open Access

    ARTICLE

    Optimization and Intelligent Control in Hybrid Renewable Energy Systems Incorporating Solar and Biomass

    Arpita Johri1,2,*, Varnita Verma3, Mainak Basu1,*

    Energy Engineering, Vol.122, No.5, pp. 1887-1918, 2025, DOI:10.32604/ee.2025.062355 - 25 April 2025

    Abstract The globe faces an urgent need to close the energy demand-supply gap. Addressing this difficulty requires constructing a Hybrid Renewable Energy System (HRES), which has proven to be the most appropriate solution. HRES allows for integrating two or more renewable energy resources, successfully addressing the issue of intermittent availability of non-conventional energy resources. Optimization is critical for improving the HRES’s performance parameters during implementation. This study focuses on HRES using solar and biomass as renewable energy supplies and appropriate energy storage technologies. However, energy fluctuations present a problem with the power quality of HRES. To… More > Graphic Abstract

    Optimization and Intelligent Control in Hybrid Renewable Energy Systems Incorporating Solar and Biomass

  • Open Access

    ARTICLE

    Coordinated Service Restoration of Integrated Power and Gas Systems with Renewable Energy Sources

    Xincong Shi1,2, Yuze Ji3,*, Xinrui Wang3, Ruimin Tian3, Chao Zhang2

    Energy Engineering, Vol.122, No.3, pp. 1199-1220, 2025, DOI:10.32604/ee.2025.061586 - 07 March 2025

    Abstract With the development of integrated power and gas distribution systems (IPGS) incorporating renewable energy sources (RESs), coordinating the restoration processes of the power distribution system (PS) and the gas distribution system (GS) by utilizing the benefits of RESs enhances service restoration. In this context, this paper proposes a coordinated service restoration framework that considers the uncertainty in RESs and the bi-directional restoration interactions between the PS and GS. Additionally, a coordinated service restoration model is developed considering the two systems’ interdependency and the GS’s dynamic characteristics. The objective is to maximize the system resilience index… More >

  • Open Access

    REVIEW

    A Review of Piezoelectric Phenomena as a Key Characteristic of Wood

    Zeynep Eda Özan1,*, Gökhan Gündüz2, Deniz Aydemir1,*

    Journal of Renewable Materials, Vol.12, No.12, pp. 1985-2016, 2024, DOI:10.32604/jrm.2024.056000 - 20 December 2024

    Abstract Piezoelectric materials convert mechanical energy into electrical energy, acting as renewable energy sources. As smart materials, they respond to environmental changes by altering their properties. When pressure is applied, their structure separates positive and negative charge centers, producing opposite charges on crystal surfaces. This generates an electric field and a measurable potential. Wood, a natural material, also exhibits piezoelectric behavior. The piezoelectric effect of wood was first discovered by Russian scientists in 1940–1950. Then, in 1955, Fukada analyzed both the direct and inverse piezoelectric effect of wood and scientifically proved that this natural material has… More > Graphic Abstract

    A Review of Piezoelectric Phenomena as a Key Characteristic of Wood

  • Open Access

    ARTICLE

    Hydroelectric and Hydrogen Storage Systems for Electric Energy Produced from Renewable Energy Sources

    Saif Serag1,*, Adil Echchelh2, Biagio Morrone1

    Energy Engineering, Vol.121, No.10, pp. 2719-2741, 2024, DOI:10.32604/ee.2024.054424 - 11 September 2024

    Abstract Renewable energy sources are essential for mitigating the greenhouse effect and supplying energy to resource-scarce regions. However, their intermittent nature necessitates efficient storage solutions to enhance system efficiency and manage energy costs. This paper investigates renewable and clean storage systems, specifically examining the storage of electricity generated from renewable sources using hydropower plants and hydrogen, both of which are highly efficient and promising for future energy production and storage. The study utilizes extensive literature data to analyze the impact of various parameters on the cost per kWh of electricity production in hybrid renewable systems incorporating… More > Graphic Abstract

    Hydroelectric and Hydrogen Storage Systems for Electric Energy Produced from Renewable Energy Sources

  • Open Access

    ARTICLE

    Characteristics of Biopellets Manufactured from Various Lignocellulosic Feedstocks as Alternative Renewable Energy Sources

    Anggara Ridho Putra1, Apri Heri Iswanto1,*, Arif Nuryawan1, Saptadi Darmawan2, Elvara Windra Madyaratri2, Widya Fatriasari2, Lee Seng Hua3, Petar Antov4,*, Harisyah Manurung1, Ade Pera Amydha Sudrajat Herawati Pendi2

    Journal of Renewable Materials, Vol.12, No.6, pp. 1103-1123, 2024, DOI:10.32604/jrm.2024.051077 - 02 August 2024

    Abstract The increased valorization of renewable and cost-effective lignocellulosic feedstocks represents a viable, sustainable, and eco-friendly approach toward the production of biopellets as alternative energy sources. The aim of this research work was to investigate and evaluate the feasibility of using various lignocellulosic raw materials, i.e., raru (Cotylelobium melanoxylon), mangrove (Rhizophora spp.), sengon (Paraserianthes falcataria), kemenyan toba (Styrax sumatrana), oil palm (Elaeis guineensis), manau rattan (Calamus manan), and belangke bamboo (Gigantochloa pruriens) for manufacturing biopellets with different particle sizes. The raw materials used were tested for their moisture content, specific gravity, ash, cellulose, and lignin content. In addition, thermal analyses, i.e., calorific values,… More >

  • Open Access

    ARTICLE

    Enhancing Renewable Energy Integration: A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks

    Ali S. Alghamdi1,*, Mohamed A. Zohdy2, Saad Aldoihi3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1339-1370, 2024, DOI:10.32604/cmes.2024.048839 - 20 May 2024

    Abstract In the contemporary era, the global expansion of electrical grids is propelled by various renewable energy sources (RESs). Efficient integration of stochastic RESs and optimal power flow (OPF) management are critical for network optimization. This study introduces an innovative solution, the Gaussian Bare-Bones Levy Cheetah Optimizer (GBBLCO), addressing OPF challenges in power generation systems with stochastic RESs. The primary objective is to minimize the total operating costs of RESs, considering four functions: overall operating costs, voltage deviation management, emissions reduction, voltage stability index (VSI) and power loss mitigation. Additionally, a carbon tax is included in… More >

  • Open Access

    ARTICLE

    Optimal Bidding Strategies of Microgrid with Demand Side Management for Economic Emission Dispatch Incorporating Uncertainty and Outage of Renewable Energy Sources

    Mousumi Basu1, Chitralekha Jena2, Baseem Khan3,4,*, Ahmed Ali4

    Energy Engineering, Vol.121, No.4, pp. 849-867, 2024, DOI:10.32604/ee.2024.043294 - 26 March 2024

    Abstract In the restructured electricity market, microgrid (MG), with the incorporation of smart grid technologies, distributed energy resources (DERs), a pumped-storage-hydraulic (PSH) unit, and a demand response program (DRP), is a smarter and more reliable electricity provider. DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines. Better bidding strategies, prepared by MG operators, decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources (RES). But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate. To More >

  • Open Access

    ARTICLE

    Genetic Algorithm Based Smart Grid System for Distributed Renewable Energy Sources

    M. Mythreyee*, Dr A. Nalini

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 819-837, 2023, DOI:10.32604/csse.2023.028525 - 16 August 2022

    Abstract This work presents the smart grid system for distributed Renewable Energy Sources (RES) with control methods. The hybrid MicroGrids (MG) are trending in small-scale power systems that involve distributed generations, power storage, and various loads. RES of solar are implemented with boost converter using Maximum Power Point Tracking (MPPT) with perturb and observe technique to track the maximum power. Also, the wind system is designed by permanent magnet synchronous generator that includes boost converter with MPPT technique. The battery is also employed with a Direct Current (DC)-DC bidirectional converter, and has a state of charge. More >

Displaying 1-10 on page 1 of 16. Per Page